Ultraslow diffusion is characterized by a logarithmic growth of the mean squared displacement (MSD) as a function of time. It occurs in complex arrangements of molecules, microbes, and many-body systems. This paper reviews mechanical models for ultraslow diffusion in heterogeneous media from both macroscopic and microscopic perspectives. Macroscopic models are typically formulated in terms of a diffusion equation that employs noninteger order derivatives (distributed order, structural, and comb models (CM)) or employs a diffusion coefficient that is a function of space or time. Microscopic models are usually based on the continuous time random walk (CTRW) theory, but use a weighted logarithmic function as the limiting formula of the waiting time density. The similarities and differences between these models are analyzed and compared with each other. The corresponding MSD in each case is tabulated and discussed from the perspectives of the underlying assumptions and of real-world applications in heterogeneous materials. It is noted that the CMs can be considered as a type of two-dimensional distributed order fractional derivative model (DFDM), and that the structural derivative models (SDMs) generalize the DFDMs. The heterogeneous diffusion process model (HDPM) with time-dependent diffusivity can be rewritten to a local structural derivative diffusion model mathematically. The ergodic properties, aging effect, and velocity autocorrelation for the ultraslow diffusion models are also briefly discussed.

References

1.
Metzler
,
R.
, and
Klafter
,
J.
,
2000
, “
The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach
,”
Phys. Rep.
,
339
(
1
), pp.
1
77
.
2.
Schumer
,
R.
,
Meerschaert
,
M.
, and
Baeumer
,
B.
,
2009
, “
Fractional Advection Dispersion Equations for Modeling Transport at the Earth Surface
,”
J. Geophys. Res: Earth Surf.
,
114
(
F4
), p.
F00A07
.
3.
Klages
,
R.
,
Radons
,
G.
, and
Sokolov
,
I. M.
,
2008
,
Anomalous Transport: Foundations and Applications
,
Wiley
,
New York
.
4.
Bénichou
,
O.
, and
Oshanin
,
G.
,
2002
, “
Ultraslow Vacancy-Mediated Tracer Diffusion in Two Dimensions: The Einstein Relation Verified
,”
Phys. Rev. E.
,
66
(
3
), p.
031101
.
5.
Rosenau
,
P.
,
1995
, “
Fast and Superfast Diffusion Processes
,”
Phys. Rev. Lett.
,
74
(
7
), pp.
1056
1059
.
6.
Kuipers
,
N.
, and
Beenackers
,
A.
,
1993
, “
Non-Fickian Diffusion With Chemical Reaction in Glassy Polymers With Swelling Induced by the Penetrant: A Mathematical Model
,”
Chem. Eng. Sci.
,
48
(
16
), pp.
2957
2971
.
7.
Metzler
,
R.
,
Barkai
,
E.
, and
Klafter
,
J.
,
1999
, “
Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker-Planck Equation Approach
,”
Phys. Rev. Lett.
,
82
(
18
), pp.
3563
3567
.
8.
Metzler
,
R.
,
Jeon
,
J. H.
,
Cherstvy
,
A. G.
, and
Barkai
,
E.
,
2014
, “
Anomalous Diffusion Models and Their Properties: Non-Stationarity, Nonergodicity, and Ageing at the Centenary of Single Particle Tracking
,”
Phys. Chem. Chem. Phys.
,
16
(
44
), pp.
24128
24164
.
9.
Sikora
,
G.
,
Burnecki
,
K.
, and
Wyłomańska
,
A.
,
2017
, “
Mean Squared Displacement Statistical Test for Fractional Brownian Motion
,”
Phys. Rev E.
,
95
(
3
), p.
032110
.
10.
Uneyama
,
T.
,
Miyaguchi
,
T.
, and
Akimoto
,
T.
,
2015
, “
Fluctuation Analysis of Time-Averaged Mean-Square Displacement for the Langevin Equation With Time-Dependent and Fluctuating Diffusivity
,”
Phys. Rev. E.
,
92
(
3
), p.
032140
.
11.
Trotta
,
E.
, and
Zimbardo
,
G.
,
2015
, “
A Numerical Study of Lévy Random Walks: Mean Square Displacement and Power-Law Propagators
,”
J. Plasma. Phys.
,
81
, p.
325810108
.
12.
Godec
,
A.
,
Chechkin
,
A. V.
,
Barkai
,
E.
,
Kantz
,
H.
, and
Metzler
,
R.
,
2014
, “
Localisation and Universal Fluctuations in Ultraslow Diffusion Processes
,”
J. Phys. A-Math. Theor.
,
47
(
49
), p.
492002
.
13.
Einstein
,
A.
,
1905
, “
On the Movement of Small Particles Suspended in Stationary Liquids Required by Molecular-Kinetic Theory of Heat
,”
Ann. Phys.
,
17
(
8
), pp.
549
560
.
14.
El Masri
,
D.
,
Berthier
,
L.
, and
Cipelletti
,
L.
,
2010
, “
Subdiffusion and Intermittent Dynamic Fluctuations in the Aging Regime of Concentrated Hard Spheres
,”
Phys. Rev. E.
,
82
(
3 Pt 1
), p.
031503
.
15.
Ingo
,
C.
,
Magin
,
R.
,
Colon-Perez
,
L.
,
Triplett
,
W.
, and
Mareci
,
T.
,
2014
, “
On Random Walks and Entropy in Diffusion-Weighted Magnetic Resonance Imaging Studies of Neural Tissue
,”
Magnet. Reson. Med.
,
71
(
2
), pp.
617
627
.
16.
Zhang
,
Y.
,
2010
, “
Moments for Tempered Fractional Advection-Diffusion Equations
,”
J. Stat. Phys.
,
139
(
5
), pp.
915
939
.
17.
Zhang
,
Y.
,
Benson
,
D. A.
,
Meerschaert
,
M.
,
LaBolle
,
E.
, and
Scheffler
,
H.
,
2006
, “
Random Walk Approximation of Fractional-Order Multiscaling Anomalous Diffusion
,”
Phys. Rev. E.
,
74
(
2
), p.
026706
.
18.
Lomholt
,
M.
,
Lizana
,
L.
,
Metzler
,
R.
, and
Ambjornsson
,
T.
,
2013
, “
Microscopic Origin of the Logarithmic Time Evolution of Aging Processes in Complex Systems
,”
Phys. Rev. Lett.
,
110
(
20
), p.
208301
.
19.
Sperl
,
M.
,
2005
, “
Nearly Logarithmic Decay in the Colloidal Hard-Sphere System
,”
Phys. Rev. E.
,
71
(
6 Pt 1
), p.
060401
.
20.
Limpert
,
E.
,
Stahel
,
W. A.
, and
Abbt
,
M.
,
2001
, “
Log-Normal Distributions Across the Sciences: Keys and Clues
,”
Bioscience
,
51
(
5
), pp.
341
352
.
21.
Sandev
,
T.
,
Chechkin
,
A. V.
,
Korabel
,
N.
,
Kantz
,
H.
,
Sokolov
,
I. M.
, and
Metzler
,
R.
,
2015
, “
Distributed-Order Diffusion Equations and Multifractality: Models and Solutions
,”
Phys. Rev. E.
,
92
(
4
), p.
042117
.
22.
Sinai
,
Y. G.
,
1982
, “
The Limit Behavior of a One-Dimensional Random Walk in a Random Medium
,”
Theory Pobab. Appl.
,
27
(
2
), pp.
247
258
.
23.
Stanley
,
H. E.
, and
Havlin
,
S.
,
1987
, “
Generalisation of the Sinai Anomalous Diffusion Law
,”
J. Phys. A Gen. Phys.
,
20
(
9
), p.
L615
.
24.
Sanders
,
L. P.
,
Lomholt
,
M. A.
,
Lizana
,
L.
,
Fogelmark
,
K.
,
Metzler
,
R.
, and
Ambjörnsson
,
T.
,
2014
, “
Severe Slowing-Down and Universality of the Dynamics in Disordered Interacting Many-Body Systems: Ageing and Ultraslow Diffusion
,”
New J. Phys.
,
16
(
11
), p.
113050
.
25.
Brilliantov
,
N.
, and
Pöschel
,
T.
,
2005
, “
Kinetic Theory of Granular Gases
,”
Phys. Today
,
58
(
10
), pp.
84
86
.
26.
Drager
,
J.
, and
Klafter
,
J.
,
2000
, “
Strong Anomaly in Diffusion Generated by Iterated Maps
,”
Phys. Rev. Lett.
,
84
(
26 Pt 1
), pp.
5998
6001
.
27.
Cassi
,
D.
, and
Regina
,
S.
,
1996
, “
Random Walks on Bounded Structures
,”
Phys. Rev. Lett.
,
76
(
16
), pp.
2914
2917
.
28.
Vaknin
,
A.
,
Ovadyahu
,
Z.
, and
Pollak
,
M.
,
2000
, “
Aging Effects in an Anderson Insulator
,”
Phys. Rev. Lett.
,
84
(
15
), pp.
3402
3405
.
29.
Brauns
,
E.
,
Madaras
,
M.
,
Coleman
,
R.
,
Murphy
,
C.
, and
Berg
,
M.
,
2002
, “
Complex Local Dynamics in DNA on the Picosecond and Nanosecond Time Scales
,”
Phys. Rev. Lett.
,
88
(
15
), p.
158101
.
30.
Matan
,
K.
,
Williams
,
R.
,
Witten
,
T.
, and
Nagel
,
S.
,
2002
, “
Crumpling a Thin Sheet
,”
Phys. Rev. Lett.
,
88
(
7
), p.
076101
.
31.
Ben-David
,
O.
,
Rubinstein
,
S.
, and
Fineberg
,
J.
,
2010
, “
Slip-Stick and the Evolution of Frictional Strength
,”
Nature
,
463
(
7277
), p.
76
.
32.
Richard
,
P.
,
Nicodemi
,
M.
,
Delannay
,
R.
,
Ribière
,
P.
, and
Bideau
,
D.
,
2005
, “
Slow Relaxation and Compaction of Granular Systems
,”
Nat. Mater.
,
4
(
2
), pp.
121
128
.
33.
Boettcher
,
S.
, and
Sibani
,
P.
,
2011
, “
Aging in Dense Colloids as Diffusion in the Logarithm of Time
,”
J. Phys. Cond. Matt.
,
23
(
6
), p.
065103
.
34.
Watamabe
,
H.
,
2018
, “
Empirical Observations of Ultraslow Diffusion Driven by the Fractional Dynamics in Languages
,”
Phys. Rev. E.
,
98
(
1
), p.
012308
.
35.
Song
,
C.
,
Koren
,
T.
,
Wang
,
P.
, and
Barabasi
,
A.
,
2010
, “
Modelling the Scaling Properties of Human Mobility
,”
Nat. Phys.
,
6
(
10
), pp.
818
823
.
36.
Chen
,
W.
,
Liang
,
Y.
, and
Hei
,
X.
,
2016
, “
Structural Derivative Based on Inverse Mittag-Leffler Function for Modeling Ultraslow Diffusion
,”
Fract. Calc. Appl. Anal.
,
19
(
5
), pp.
1316
1346
.
37.
Hilfer
,
R.
, and
Seybold
,
H.
,
2006
, “
Computation of the Generalized Mittag-Leffler Function and Its Inverse in the Complex Plane
,”
Integr. Transforms Spec. Funct.
,
17
(
9
), pp.
637
652
.
38.
Hardy
,
G.
,
1928
, “
Gösta Mittag-Leffler
,”
J. Lond. Math. Soc.
,
3
(
2
), pp.
156
160
.
39.
Hiramoto-Yamaki
,
N.
,
Tanaka
,
K. A. K.
,
Suzuki
,
K. G. N.
,
Hirosawa
,
K. M.
,
Miyahara
,
M. S. H.
,
Kalay
,
Z.
,
Tanaka
,
K.
,
Kasai
,
R. S.
,
Kusumi
,
A.
, and
Fujiwara
,
T. K.
,
2014
, “
Ultrafast Diffusion of a Fluorescent Cholesterol Analog in Compartmentalized Plasma Membranes
,”
Traffic
,
15
(
6
), pp.
583
612
.
40.
Bouchaud
,
J. P.
, and
Georges
,
A.
,
1990
, “
Anomalous Diffusion in Disordered Media: Statistical Mechanisms, Models and Physical Applications
,”
Phys. Rep.
,
195
(
4–5
), pp.
127
293
.
41.
Piryatinska
,
A.
,
Saichev
,
A.
, and
Woyczynski
,
W.
,
2005
, “
Models of Anomalous Diffusion: The Subdiffusive Case
,”
Phys. A
,
349
(
3–4
), pp.
375
420
.
42.
Meroz
,
Y.
, and
Sokolov
,
I. M.
,
2015
, “
A Toolbox for Determining Subdiffusive Mechanisms
,”
Phys. Rep.
,
573
, pp.
1
29
.
43.
Eliazar
,
I. I.
, and
Shlesinger
,
M. F.
,
2013
, “
Fractional Motions
,”
Phys. Rep.
,
527
(
2
), pp.
101
129
.
44.
Sokolov
,
I. M.
,
2012
, “
Models of Anomalous Diffusion in Crowded Environments
,”
Soft Matter
,
8
(
35
), pp.
9043
9052
.
45.
Zoia
,
A.
,
2008
, “
Continuous-Time Random-Walk Approach to Normal and Anomalous Reaction-Diffusion Processes
,”
Phys. Rev. E.
,
77
(
4
), p.
041115
.
46.
Cortis
,
A.
, and
Knudby
,
C.
,
2006
, “
A Continuous Time Random Walk Approach to Transient Flow in Heterogeneous Porous Media
,”
Water Resour. Res.
,
42
(
10
), p.
W10201
.
47.
Le Vot
,
F.
,
Abad
,
E.
, and
Yuste
,
S.
,
2017
, “
Continuous-Time Random-Walk Model for Anomalous Diffusion in Expanding Media
,”
Phys. Rev. E.
,
96
(
3–1
), p.
032117
.
48.
Chen
,
W.
,
Sun
,
H.
,
Zhang
,
X.
, and
Korošak
,
D.
,
2010
, “
Anomalous Diffusion Modeling by Fractal and Fractional Derivatives
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1754
1758
.
49.
Benson
,
D.
,
Tadjeran
,
C.
,
Meerschaert
,
M.
,
Farnham
,
I.
, and
Pohll
,
G.
,
2004
, “
Radial Fractional-Order Dispersion Through Fractured Rock
,”
Water Resour. Res.
,
40
(
12
), pp.
87
87
.
50.
Liang
,
Y.
,
Chen
,
W.
,
Akpa
,
B.
,
Neuberger
,
T.
,
Webb
,
A.
, and
Magin
,
R.
,
2017
, “
Using Spectral and Cumulative Spectral Entropy to Classify Anomalous Diffusion in Sephadex™ Gels
,”
Comput. Math. Appl.
,
73
(
5
), pp.
765
774
.
51.
Chen
,
W.
,
2006
, “
Time-Space Fabric Underlying Anomalous Diffusion
,”
Chaos Soliton. Fract.
,
28
(
4
), pp.
923
929
.
52.
Liang
,
Y.
,
Ye
,
A.
,
Chen
,
W.
,
Gatto
,
R.
,
Colon-Perez
,
L.
,
Mareci
,
T.
, and
Magin
,
R.
,
2016
, “
A Fractal Derivative Model for the Characterization of Anomalous Diffusion in Magnetic Resonance Imaging
,”
Commun. Nonlinear Sci.
,
39
, pp.
529
537
.
53.
Chen
,
W.
,
Wang
,
F.
,
Zheng
,
B.
, and
Cai
,
W.
,
2017
, “
Non-Euclidean Distance Fundamental Solution of Hausdorff Derivative Partial Differential Equations
,”
Eng. Anal. Bound. Elem.
,
84
, pp.
213
219
.
54.
Wei
,
S.
,
Chen
,
W.
, and
Hon
,
Y.
,
2016
, “
Characterizing Time Dependent Anomalous Diffusion Process: A Survey on Fractional Derivative and Nonlinear Models
,”
Physica A.
,
462
, pp.
1244
1251
.
55.
Sun
,
Y.
,
Liang
,
M.
, and
Chang
,
T.
,
2012
, “
Time/Depth Dependent Diffusion and Chemical Reaction Model of Chloride Transportation in Concrete
,”
Appl. Math. Model.
,
36
(
3
), pp.
1114
1122
.
56.
Su
,
N.
,
Sander
,
G. C.
,
Liu
,
F.
,
Anh
,
V.
, and
Barry
,
D. A.
,
2005
, “
Similarity Solutions for Solute Transport in Fractal Porous Media Using a Time-and-Scale-Dependent Dispersivity
,”
Appl. Math. Model.
,
29
(
9
), pp.
852
870
.
57.
Chechkin
,
A. V.
,
Gorenflo
,
R.
, and
Sokolov
,
I. M.
,
2002
, “
Retarding Subdiffusion and Accelerating Superdiffusion Governed by Distributed-Order Fractional Diffusion Equations
,”
Phys. Rev. E.
,
66
(
4
), p.
046129
.
58.
Eab
,
C.
, and
Lim
,
S.
,
2011
, “
Fractional Langevin Equations of Distributed Order
,”
Phys. Rev. E.
,
83
(
3 Pt 1
), p.
031136
.
59.
Sokolov
,
I. M.
,
Chechkin
,
A. V.
, and
Klafter
,
J.
,
2004
, “
Distributed-Order Fractional Kinetics
,”
Acta Phys. Pol. B
,
35
(
4
), pp.
1323
1341
.http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=35&page=1323
60.
Kochubei
,
A.
,
2008
, “
Distributed Order Calculus and Equations of Ultraslow Diffusion
,”
J. Math. Anal. Appl.
,
340
(
1
), pp.
252
281
.
61.
Mainardi
,
F.
,
Mura
,
A.
,
Pagnini
,
G.
, and
Gorenflo
,
R.
,
2008
, “
Time-Fractional Diffusion of Distributed Order
,”
J. Vib. Control.
,
14
(
9–10
), pp.
1267
1290
.
62.
Chechkin
,
A. V.
,
Gorenflo
,
R.
, and
Sokolov
,
I. M.
,
2003
, “
Distributed Order Time Fractional Diffusion Equation
,”
Fract. Calc. Appl. Anal.
,
6
(
3
), pp.
259
279
.http://www.diogenes.bg/fcaa/volume6/fcaa63/achechkin.pdf
63.
Su
,
N.
,
Nelson
,
P.
, and
Connor
,
S.
,
2015
, “
The Distributed-Order Fractional Diffusion-Wave Equation of Groundwater Flow: Theory and Application to Pumping and Slug Tests
,”
J. Hydrol.
,
529
(
3
), pp.
1262
1273
.
64.
Chechkin
,
A. V.
,
Klafter
,
J.
, and
Sokolov
,
I. M.
,
2003
, “
Fractional Fokker-Planck Equation for Ultraslow Kinetics
,”
EPL.
,
63
(
3
), pp.
326
332
.
65.
Yang
,
X.
,
Liang
,
Y.
, and
Chen
,
W.
,
2018
, “
A Local Structural Derivative PDE Model for Ultraslow Creep
,”
Comput. Math. Appl.
,
76
(
7
), pp.
1713
1718
.
66.
Liang
,
Y.
, and
Chen
,
W.
,
2018
, “
A Non-Local Structural Derivative Model for Characterization of Ultraslow Diffusion in Dense Colloids
,”
Commun. Nonlinear Sci.
,
56
, pp.
131
137
.
67.
Chen
,
W.
, and
Liang
,
Y.
,
2017
, “
New Methodologies in Fractional and Fractal Derivatives Modeling
,”
Chaos Soliton. Fract.
,
102
, pp.
72
77
.
68.
Xu
,
W.
,
Chen
,
W.
,
Liang
,
Y.
, and
Weberszpil
,
J.
,
2017
, “
A Spatial Structural Derivative Model for Ultraslow Diffusion
,”
Therm. Sci.
,
21
(
Suppl. 1
), pp.
121
127
.
69.
Liang
,
Y.
,
2018
, “
Diffusion Entropy Method for Ultraslow Diffusion Using Inverse Mittag-Leffler Function
,”
Fract. Calc. Appl. Anal.
,
21
(
1
), pp.
104
117
.
70.
Dzhanoev
,
A.
, and
Sokolov
,
I. M.
,
2018
, “
The Effect of the Junction Model on the Anomalous Diffusion in the 3D Comb Structure
,”
Chaos Solitons. Fract.
,
106
, pp.
330
336
.
71.
Sandev
,
T.
,
Iomin
,
A.
,
Kantz
,
H.
,
Metzler
,
R.
, and
Chechkin
,
A. V.
,
2016
, “
Comb Model With Slow and Ultraslow Diffusion
,”
Math. Model. Nat. Phenom
,
11
(
3
), pp.
18
33
.
72.
Havlin
,
S.
,
Kiefer
,
J.
, and
Weiss
,
G. H.
,
1987
, “
Anomalous Diffusion on a Random Comblike Structure
,”
Phys. Rev. A.
,
36
(
3
), pp.
1403
1408
.
73.
Iomin
,
A.
, and
Méndez
,
V.
,
2016
, “
Does Ultra-Slow Diffusion Survive in a Three Dimensional Cylindrical Comb
,”
Chaos Solitons Fractals
,
82
, pp.
142
147
.
74.
Cherstvy
,
A. G.
, and
Metzler
,
R.
,
2013
, “
Population Splitting, Trapping, and Non-Ergodicity in Heterogeneous Diffusion Processes
,”
Phys. Chem. Chem. Phys.
,
15
(
46
), pp.
20220
20235
.
75.
Cherstvy
,
A. G.
, and
Metzler
,
R.
,
2014
, “
Non-Ergodicity, Fluctuations, and Criticality in Heterogeneous Diffusion Processes
,”
Phys. Rev. E.
,
90
(
1
), p.
012134
.
76.
Cherstvy
,
A. G.
,
Chechkin
,
A. V.
, and
Metzler
,
R.
,
2014
, “
Particle Invasion, Survival, and Non-Ergodicity in 2D Diffusion, Processes With Space-Dependent Diffusivity
,”
Soft Matter
,
10
(
10
), pp.
1591
1601
.
77.
Bodrova
,
A.
,
Chechkin
,
A. V.
,
Cherstvy
,
A. G.
,
Safdari
,
H.
,
Sokolov
,
I. M.
, and
Metzler
,
R.
,
2016
, “
Underdamped Scaled Brownian Motion: (Non-)Existence of the Overdamped Limit in Anomalous Diffusion
,”
Sci. Rep.
,
6
, p.
30520
.
78.
Jeon
,
J. H.
,
Chechkin
,
A. V.
, and
Metzler
,
R.
,
2014
, “
Scaled Brownian Motion: A Paradoxical Process With a Time Dependent Diffusivity for the Description of Anomalous Diffusion
,”
Phys. Chem. Chem. Phys.
,
16
(
30
), pp.
15811
15817
.
79.
Bodrova
,
A.
,
Chechkin
,
A. V.
,
Cherstvy
,
A. G.
, and
Metzler
,
R.
,
2015
, “
Ultraslow Scaled Brownian Motion
,”
New J. Phys.
,
17
(
6
), p.
063038
.
80.
Havlin
,
S.
, and
Weiss
,
G. H.
,
1990
, “
A New Class of Long-Tailed Pausing Time Densities for the CTRW
,”
J. Stat. Phys.
,
58
(
5–6
), pp.
1267
1273
.
81.
Meerschaert
,
M.
, and
Scheffler
,
H.
,
2005
, “
Limit Theorems for Continuous Time Random Walks With Slowly Varying Waiting Times
,”
Stat. Probab. Lett.
,
71
(
1
), pp.
15
22
.
82.
Meerschaert
,
M.
, and
Scheffler
,
H.
,
2006
, “
Stochastic Model for Ultraslow Diffusion
,”
Stoch. Proc. Appl.
,
116
(
9
), pp.
1215
1235
.
83.
Denisov
,
S. I.
, and
Kantz
,
H.
,
2011
, “
Continuous-Time Random Walk With a Super-heavy-Tailed Distribution of Waiting Times
,”
Phys. Rev. E.
,
83
(
4 Pt 1
), p.
041132
.
84.
Denisov
,
S.
,
Bystrik
,
Y.
, and
Kantz
,
H.
,
2013
, “
Limiting Distributions of Continuous-Time Random Walks With Superheavy-Tailed Waiting Times
,”
Phys. Rev. E.
,
87
(
2
), p.
022117
.
85.
Denisov
,
S.
, and
Kantz
,
H.
,
2010
, “
Continuous-Time Random Walk Theory of Superslow Diffusion
,”
EPL
,
92
(
3
), p.
30001
.
86.
Denisov
,
S.
,
Yuste
,
S.
,
Bystrik
,
Y.
,
Kantz
,
H.
, and
Lindenberg
,
K.
,
2011
, “
Asymptotic Solutions of Decoupled Continuous-Time Random Walks With Superheavy-Tailed Waiting Time and Heavy-Tailed Jump Length Distributions
,”
Phys. Rev. E.
,
84
(
6
), p.
061143
.
87.
Liang
,
Y.
, and
Chen
,
W.
,
2018
, “
Continuous Time Random Walk Model With Asymptotical Probability Density of Waiting Times Via Inverse Mittag-Leffler Function
,”
Commun. Nonlinear Sci.
,
57
, pp.
439
448
.
88.
Huang
,
J.
, and
Zhao
,
H.
,
2017
, “
Ultraslow Diffusion and Weak Ergodicity Breaking in Right Triangular Billiards
,”
Phys. Rev. E.
,
95
(
3
), p.
032209
.
89.
Burov
,
S.
,
Jeon
,
J. H.
,
Metzler
,
R.
, and
Barkai
,
E.
,
2011
, “
Single Particle Tracking in Systems Showing Anomalous Diffusion: The Role of Weak Ergodicity Breaking
,”
Phys. Chem. Chem. Phys.
,
13
(
5
), pp.
1800
1812
.
90.
Weber
,
S.
,
Spakowitz
,
A.
, and
Theriot
,
J.
,
2010
, “
Bacterial Chromosomal Loci Move Subdiffusively Through a Viscoelastic Cytoplasm
,”
Phys. Rev. Lett.
,
104
(
23
), p.
238102
.
91.
Safdari
,
H.
,
Cherstvy
,
A. G.
,
Chechkin
,
A. V.
,
Bodrova
,
A.
, and
Metzler
,
R.
,
2017
, “
Aging Underdamped Scaled Brownian Motion: Ensemble- and Time-Averaged Particle Displacements, Nonergodicity, and the Failure of the Overdamping Approximation
,”
Phys. Rev. E.
,
95
(
1
), p.
012120
.
92.
Chechkin
,
A. V.
,
Kantz
,
H.
, and
Metzler
,
R.
,
2017
, “
Ageing Effects in Ultraslow Continuous Time Random Walks
,”
Eur. Phys. J. B.
,
90
(
11
), p.
205
.
93.
Lutz
,
E.
,
2001
, “
Fractional Langevin Equation
,”
Phys. Rev. E
,
64
(
5 Pt 1
), p.
051106
.
94.
Heymans
,
N.
, and
Podlubny
,
I.
,
2006
, “
Physical Interpretation of Initial Conditions for Fractional Differential Equations With Riemann-Liouville Fractional Derivatives
,”
Rheol. Acta.
,
45
(
5
), pp.
765
771
.
95.
Caputo
,
M.
,
1959
, “
Conformal Projection of an Ellipsoid of Revolution When the Scale Factor and Its Normal Derivative Are Assigned on a Geodesic Line of the Ellipsoid
,”
J. Geophys. Res.
,
64
(
11
), pp.
1867
1873
.
96.
Abramowitz
,
M.
, and
Stegun
,
I.
,
1970
,
Handbook of Mathematical Functions
,
Dover
,
New York
.
97.
Mainardi
,
F.
, and
Pagnini
,
G.
,
2003
, “
The Wright Functions as Solutions of the Time-Fractional Diffusion Equation
,”
Appl. Math. Comput.
,
141
(
1
), pp.
51
62
.
98.
Chen
,
W.
,
2017
, “
Non-Power-Function Metric: A Generalized Fractal
,”
Math. Phys.
, viXra: 1612.0409.
99.
Liang
,
Y.
,
Chen
,
W.
, and
Cai
,
W.
,
2019
,
Hausdorff Calculus: Applications to Fractal Systems
,
De Gruyter
,
Berlin
.
100.
Zeng
,
C.
, and
Chen
,
Y.
,
2015
, “
Global Padé Approximations of the Generalized Mittag-Leffler Function and Its Inverse
,”
Fract. Calc. Appl. Anal.
,
18
(
6
), pp.
1492
1506
.
101.
Ingo
,
C.
,
Barrick
,
T.
,
Webb
,
A.
, and
Ronen
,
I.
,
2017
, “
Accurate Padé Global Approximations for the Mittag-Leffler Function, Its Inverse, and Its Partial Derivatives to Efficiently Compute Convergent Power Series
,”
Int. J. Appl. Comput. Math.
,
3
(
2
), pp.
347
362
.
102.
Gorenflo
,
R.
,
Kilbas
,
A.
,
Mainardi
,
F.
, and
Rogosin
,
S.
,
2014
,
Mittag-Leffler Functions, Related Topics and Applications
,
Springer-Verlag
,
Berlin
.
103.
Su
,
X.
,
Chen
,
W.
,
Xu
,
W.
, and
Liang
,
Y.
,
2018
, “
Non-Local Structural Derivative Maxwell Model for Characterizing Ultra-Slow Rheology in Concrete
,”
Constr. Build. Mater.
,
190
, pp.
342
348
.
104.
Kirane
,
M.
, and
Torebek
,
B.
,
2018
, “
Extremum Principle for the Hadamard Derivatives and Its Application to Nonlinear Fractional Partial Differential Equations
,” arXiv: 1806.04886.
105.
Sandev
,
T.
,
Chechkin
,
A. V.
,
Kantz
,
H.
, and
Metzler
,
R.
,
2015
, “
Diffusion and Fokker-Planck-Smoluchowski Equations With Generalized Memory Kernel
,”
Fract. Calc. Appl. Anal.
,
18
(
4
), pp.
1006
1038
.
106.
Kochubei
,
A.
,
2011
, “
General Fractional Calculus, Evolution Equations, and Renewal Processes
,”
Integr. Equ. Oper. Theory
,
71
(
4
), pp.
583
600
.
107.
Cherstvy
,
A. G.
,
Chechkin
,
A. V.
, and
Metzler
,
R.
,
2013
, “
Anomalous Diffusion and Ergodicity Breaking in Heterogeneous Diffusion Processes
,”
New J. Phys.
,
15
(
8
), p.
083039
.
108.
Safdari
,
H.
,
Cherstvy
,
A. G.
,
Chechkin
,
A. V.
,
Thiel
,
F.
,
Sokolov
,
I. M.
, and
Metzler
,
R.
,
2015
, “
Quantifying the Non-Ergodicity of Scaled Brownian Motion
,”
J. Phys. A.
,
48
(
37
), p.
375002
.
109.
Safdari
,
H.
,
Chechkin
,
A. V.
,
Jafari
,
G.
, and
Metzler
,
R.
,
2015
, “
Aging Scaled Brownian Motion
,”
Phys. Rev. E.
,
91
(
4
), p.
042107
.
110.
Montroll
,
E.
, and
Weiss
,
G. H.
,
1965
, “
Random Walks on Lattices II
,”
J. Math. Phys.
,
6
(
2
), pp.
167
181
.
111.
Leonenko
,
N.
, and
Olenko
,
A.
,
2013
, “
Tauberian and Abelian Theorems for Long-Range Dependent Random Fields
,”
Comput. Appl.
,
15
(
4
), pp.
715
742
.
112.
Kesten
,
H.
,
1986
, “
The Limit Distribution of Sinai's Random Walk in Random Environment
,”
Phys. A
,
138
(
1–2
), pp.
299
309
.
113.
Klemm
,
A.
,
Müller
,
H.
, and
Kimmich
,
R.
,
1999
, “
Evaluation of Fractal Parameters of percolation model Objects and Natural Porous Media by Means of NMR Microscopy
,”
Phys. A
,
266
(
1–4
), pp.
242
246
.
114.
Weeks
,
E.
, and
Weitz
,
D.
,
2002
, “
Subdiffusion and the Cage Effect Studied Near the Colloidal Glass Transition
,”
Chem. Phys.
,
284
(
1–2
), pp.
361
367
.
115.
Courtland
,
R.
, and
Weeks
,
E.
,
2003
, “
Direct Visualization of Aging in Colloidal Glasses
,”
J. Phys. Condens. Matter
,
15
(
1
), p.
S359
.
116.
Bel
,
G.
, and
Barkai
,
E.
,
2006
, “
Random Walk to a Nonergodic Equilibrium Concept
,”
Phys. Rev. E.
,
73
(
1 Pt 2
), p.
016125
.
117.
Evangelista
,
L. R.
, and
Lensi
,
E. K.
,
2018
,
Fractional Diffusion Equations and Anomalous Diffusion
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.