Abstract

Architected materials have received increasing attention due to their exotic mechanical properties including ultra-high stiffness-to-weight ratio, strength, energy absorption, and toughness. Typically, their mechanical properties and deformation behavior arise from the periodically tessellated unit cells. Although periodicity in conventional architected materials promises homogeneity and predictability in mechanical behaviors, it imposes a strong restriction on the design space of architected materials. Inspired by biomaterials, aperiodic and disordered designs significantly expand the design space and have been proven effective in controlling and optimizing linear elastic properties. Taking a step further, here we focus on the nonlinear properties of irregular lattice materials under large deformation, including the stress–strain curve and specific energy absorption. Such materials are generated by a nature-inspired virtual growth program that assembles predefined geometric building blocks in a stochastic yet controllable manner. The nonlinear properties are analyzed through quasi-static compression experiments and large-scale numerical simulations. Based on the well-agreed experimental and numerical results, through the lens of machine learning techniques, the nonlinear properties show a strong correlation with the appearance frequency of the building blocks and their local connectivity, regardless of the nondeterministic nature of the microstructures. A practical constitutive model is proposed for future developments such as generative design and engineering application. Our research offers valuable insights and serves as an inspiration for deeper exploration into the intricate structure–property relationships within materials with aperiodic and disordered microstructures.

References

1.
Xia
,
X.
,
Spadaccini
,
C. M.
, and
Greer
,
J. R.
,
2022
, “
Responsive Materials Architected in Space and Time
,”
Nat. Rev. Mater.
,
7
(
9
), pp.
683
701
.
2.
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
2001
, “
Effective Properties of the Octet-Truss Lattice Material
,”
J. Mech. Phys. Solids
,
49
(
8
), pp.
1747
1769
.
3.
Wang
,
L.
,
Chang
,
Y.
,
Wu
,
S.
,
Zhao
,
R. R.
, and
Chen
,
W.
,
2023
, “
Physics-Aware Differentiable Design of Magnetically Actuated Kirigami for Shape Morphing
,”
Nat. Commun.
,
14
(
1
), p.
8516
.
4.
Bessa
,
M. A.
,
Glowacki
,
P.
, and
Houlder
,
M.
,
2019
, “
Bayesian Machine Learning in Metamaterial Design: Fragile Becomes Supercompressible
,”
Adv. Mater.
,
31
(
48
), p.
1904845
.
5.
Zheng
,
X.
,
Lee
,
H.
,
Weisgraber
,
T. H.
,
Shusteff
,
M.
,
DeOtte
,
J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
, et al
,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
.
6.
Wang
,
F.
,
Brøns
,
M.
, and
Sigmund
,
O.
,
2023
, “
Non-hierarchical Architected Materials With Extreme Stiffness and Strength
,”
Adv. Funct. Mater.
,
33
(
13
), p.
2211561
.
7.
Mueller
,
J.
,
Raney
,
J. R.
,
Shea
,
K.
, and
Lewis
,
J. A.
,
2018
, “
Architected Lattices With High Stiffness and Toughness Via Multicore-Shell 3D Printing
,”
Adv. Mater.
,
30
(
12
), p.
1705001
.
8.
Bauer
,
J.
,
Schroer
,
A.
,
Schwaiger
,
R.
, and
Kraft
,
O.
,
2016
, “
Approaching Theoretical Strength in Glassy Carbon Nanolattices
,”
Nat. Mater.
,
15
(
4
), pp.
438
443
.
9.
Li
,
T.
,
Jarrar
,
F.
,
Al-Rub
,
R. A.
, and
Cantwell
,
W.
,
2021
, “
Additive Manufactured Semi-Plate Lattice Materials With High Stiffness, Strength and Toughness
,”
Int. J. Solids Struct.
,
230
, p.
111153
.
10.
Wang
,
Y.
,
Zhang
,
X.
,
Li
,
Z.
,
Gao
,
H.
, and
Li
,
X.
,
2022
, “
Achieving the Theoretical Limit of Strength in Shell-Based Carbon Nanolattices
,”
Proc. Natl. Acad. Sci. USA
,
119
(
34
), p.
e2119536119
.
11.
Gu
,
X. W.
, and
Greer
,
J. R.
,
2015
, “
Ultra-strong Architected Cu Meso-lattices
,”
Extreme Mech. Lett.
,
2
, pp.
7
14
.
12.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson's Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
.
13.
Baughman
,
R. H.
,
Shacklette
,
J. M.
,
Zakhidov
,
A. A.
, and
Stafström
,
S.
,
1998
, “
Negative Poisson's Ratios as a Common Feature of Cubic Metals
,”
Nature
,
392
(
6674
), pp.
362
365
.
14.
Xu
,
N.
,
Liu
,
H.-T.
,
An
,
M.-R.
, and
Wang
,
L.
,
2021
, “
Novel 2D Star-Shaped Honeycombs With Enhanced Effective Young's Modulus and Negative Poisson's Ratio
,”
Extreme Mech. Lett.
,
43
, p.
101164
.
15.
Zheng
,
B.
, and
Gu
,
G. X.
,
2019
, “
Tuning the Graphene Mechanical Anisotropy Via Defect Engineering
,”
Carbon
,
155
, pp.
697
705
.
16.
Wang
,
P.
,
Yang
,
F.
,
Li
,
P.
,
Zheng
,
B.
, and
Fan
,
H.
,
2021
, “
Design and Additive Manufacturing of a Modified Face-Centered Cubic Lattice With Enhanced Energy Absorption Capability
,”
Extreme Mech. Lett.
,
47
, p.
101358
.
17.
Cheng
,
H.
,
Zhu
,
X.
,
Cheng
,
X.
,
Cai
,
P.
,
Liu
,
J.
,
Yao
,
H.
,
Zhang
,
L.
, and
Duan
,
J.
,
2023
, “
Mechanical Metamaterials Made of Freestanding Quasi-BCC Nanolattices of Gold and Copper With Ultra-high Energy Absorption Capacity
,”
Nat. Commun.
,
14
(
1
), p.
1243
.
18.
Li
,
X.
,
Yu
,
X.
,
Chua
,
J. W.
,
Lee
,
H. P.
,
Ding
,
J.
, and
Zhai
,
W.
,
2021
, “
Microlattice Metamaterials With Simultaneous Superior Acoustic and Mechanical Energy Absorption
,”
Small
,
17
(
24
), p.
2100336
.
19.
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Torrents
,
A.
,
Sorensen
,
A. E.
,
Lian
,
J.
,
Greer
,
J. R.
,
Valdevit
,
L.
, and
Carter
,
W. B.
,
2011
, “
Ultralight Metallic Microlattices
,”
Science
,
334
(
6058
), pp.
962
965
.
20.
Vasiliev
,
V. V.
,
Barynin
,
V. A.
, and
Razin
,
A. F.
,
2012
, “
Anisogrid Composite Lattice Structures—Development and Aerospace Applications
,”
Compos. Struct.
,
94
(
3
), pp.
1117
1127
.
21.
Antimirova
,
E.
,
Jung
,
J.
,
Zhang
,
Z.
,
Machuca
,
A.
, and
Gu
,
G. X.
,
2024
, “
Overview of Computational Methods to Predict Flutter in Aircraft
,”
ASME J. Appl. Mech.
,
91
(
5
), p.
050801
.
22.
Lvov
,
V. A.
,
Senatov
,
F. S.
,
Veveris
,
A. A.
,
Skrybykina
,
V. A.
, and
Díaz Lantada
,
A.
,
2022
, “
Auxetic Metamaterials for Biomedical Devices: Current Situation, Main Challenges, and Research Trends
,”
Materials
,
15
(
4
), p.
1439
.
23.
McGregor
,
M.
,
Patel
,
S.
,
McLachlin
,
S.
, and
Vlasea
,
M.
,
2021
, “
Architectural Bone Parameters and the Relationship to Titanium Lattice Design for Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
47
, p.
102273
.
24.
Cui
,
H.
,
Yao
,
D.
,
Hensleigh
,
R.
,
Lu
,
H.
,
Calderon
,
A.
,
Xu
,
Z.
,
Davaria
,
S.
, et al
,
2022
, “
Design and Printing of Proprioceptive Three-Dimensional Architected Robotic Metamaterials
,”
Science
,
376
(
6599
), pp.
1287
1293
.
25.
Lee
,
R. H.
,
Mulder
,
E. A.
, and
Hopkins
,
J. B.
,
2022
, “
Mechanical Neural Networks: Architected Materials That Learn Behaviors
,”
Sci. Rob.
,
7
(
71
), p.
eabq7278
.
26.
Wen
,
L.
,
Pan
,
F.
, and
Ding
,
X.
,
2020
, “
Tensegrity Metamaterials for Soft Robotics
,”
Sci. Rob.
,
5
(
45
), p.
eabd9158
.
27.
Chen
,
T.
,
Pauly
,
M.
, and
Reis
,
P. M.
,
2021
, “
A Reprogrammable Mechanical Metamaterial With Stable Memory
,”
Nature
,
589
(
7842
), pp.
386
390
.
28.
Chen
,
T.
,
Bilal
,
O. R.
,
Lang
,
R.
,
Daraio
,
C.
, and
Shea
,
K.
,
2019
, “
Autonomous Deployment of a Solar Panel Using Elastic Origami and Distributed Shape-Memory-Polymer Actuators
,”
Phys. Rev. Appl.
,
11
(
6
), p.
064069
.
29.
Fleck
,
N. A.
,
Deshpande
,
V. S.
, and
Ashby
,
M. F.
,
2010
, “
Micro-architectured Materials: Past, Present and Future
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
466
(
2121
), pp.
2495
2516
.
30.
Chen
,
X.
,
Moughames
,
J.
,
Ji
,
Q.
,
Martínez
,
J. A. I.
,
Tan
,
H.
,
Adrar
,
S.
,
Laforge
,
N.
, et al
,
2020
, “
Optimal Isotropic, Reusable Truss Lattice Material With Near-Zero Poisson's Ratio
,”
Extreme Mech. Lett.
,
41
, p.
101048
.
31.
Zhang
,
W.
,
Yang
,
W.
,
Zhou
,
J.
,
Li
,
D.
, and
Guo
,
X.
,
2017
, “
Structural Topology Optimization Through Explicit Boundary Evolution
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011011
.
32.
Lee
,
K.-W.
,
Lee
,
S.-H.
,
Noh
,
K.-H.
,
Park
,
J.-Y.
,
Cho
,
Y.-J.
, and
Kim
,
S.-H.
,
2019
, “
Theoretical and Numerical Analysis of the Mechanical Responses of BCC and FCC Lattice Structures
,”
J. Mech. Sci. Technol.
,
33
(
5
), pp.
2259
2266
.
33.
Jin
,
N.
,
Yan
,
Z.
,
Wang
,
Y.
,
Cheng
,
H.
, and
Zhang
,
H.
,
2021
, “
Effects of Heat Treatment on Microstructure and Mechanical Properties of Selective Laser Melted Ti-6Al-4V Lattice Materials
,”
Int. J. Mech. Sci.
,
190
, p.
106042
.
34.
Liu
,
Y.
,
Zhang
,
J.
,
Gu
,
X.
,
Zhou
,
Y.
,
Yin
,
Y.
,
Tan
,
Q.
,
Li
,
M.
, and
Zhang
,
M.-X.
,
2020
, “
Mechanical Performance of a Node Reinforced Body-Centred Cubic Lattice Structure Manufactured Via Selective Laser Melting
,”
Scr. Mater.
,
189
, pp.
95
100
.
35.
Liu
,
X.
,
Kobir
,
M. H.
,
Yang
,
Y.
,
Jiang
,
F.
, and
Kothari
,
T.
,
2023
, “
Improving Stiffness and Strength of Body-Centered Cubic Lattices With an I-Shape Beam Cross-section
,”
Mech. Mater.
,
182
, p.
104665
.
36.
Kittel
,
C.
,
2005
,
Introduction to Solid State Physics, 8th Edition
,
John Wiley & Sons
,
Hoboken, NJ
.
37.
Li
,
W.
,
Fan
,
H.
,
Bian
,
Y.
, and
Yang
,
F.
,
2021
, “
Plastic Deformation and Energy Absorption of Polycrystalline-Like Lattice Structures
,”
Mater. Des.
,
198
, p.
109321
.
38.
Lei
,
H.
,
Li
,
C.
,
Zhang
,
X.
,
Wang
,
P.
,
Zhou
,
H.
,
Zhao
,
Z.
, and
Fang
,
D.
,
2021
, “
Deformation Behavior of Heterogeneous Multi-morphology Lattice Core Hybrid Structures
,”
Addit. Manuf.
,
37
, p.
101674
.
39.
Zaiser
,
M.
, and
Zapperi
,
S.
,
2023
, “
Disordered Mechanical Metamaterials
,”
Nat. Rev. Phys.
,
5
(
11
), pp.
679
688
.
40.
Giménez-Ribes
,
G.
,
Motaghian
,
M.
,
van der Linden
,
E.
, and
Habibi
,
M.
,
2023
, “
Crumpled Structures as Robust Disordered Mechanical Metamaterials
,”
Mater. Des.
,
232
, p.
112159
.
41.
Pham
,
M.-S.
,
Liu
,
C.
,
Todd
,
I.
, and
Lertthanasarn
,
J.
,
2019
, “
Damage-Tolerant Architected Materials Inspired by Crystal Microstructure
,”
Nature
,
565
(
7739
), pp.
305
311
.
42.
Meza
,
L. R.
,
Zelhofer
,
A. J.
,
Clarke
,
N.
,
Mateos
,
A. J.
,
Kochmann
,
D. M.
, and
Greer
,
J. R.
,
2015
, “
Resilient 3D Hierarchical Architected Metamaterials
,”
Proc. Natl. Acad. Sci. USA
,
112
(
37
), pp.
11502
11507
.
43.
Zheng
,
X.
,
Smith
,
W.
,
Jackson
,
J.
,
Moran
,
B.
,
Cui
,
H.
,
Chen
,
D.
,
Ye
,
J.
, et al
,
2016
, “
Multiscale Metallic Metamaterials
,”
Nat. Mater.
,
15
(
10
), pp.
1100
1106
.
44.
Zheng
,
Z.
,
Yu
,
J.
, and
Li
,
J.
,
2005
, “
Dynamic Crushing of 2D Cellular Structures: A Finite Element Study
,”
Int. J. Impact Eng.
,
32
(
1–4
), pp.
650
664
.
45.
Rayneau-Kirkhope
,
D.
,
Bonfanti
,
S.
, and
Zapperi
,
S.
,
2019
, “
Density Scaling in the Mechanics of a Disordered Mechanical Meta-material
,”
Appl. Phys. Lett.
,
114
(
11
), p.
111902
.
46.
Aage
,
N.
,
Andreassen
,
E.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2017
, “
Giga-Voxel Computational Morphogenesis for Structural Design
,”
Nature
,
550
(
7674
), pp.
84
86
.
47.
Hanifpour
,
M.
,
Petersen
,
C. F.
,
Alava
,
M. J.
, and
Zapperi
,
S.
,
2018
, “
Mechanics of Disordered Auxetic Metamaterials
,”
Eur. Phys. J. B
,
91
(
11
), pp.
1
8
.
48.
Bonfanti
,
S.
,
Guerra
,
R.
,
Font-Clos
,
F.
,
Rayneau-Kirkhope
,
D.
, and
Zapperi
,
S.
,
2020
, “
Automatic Design of Mechanical Metamaterial Actuators
,”
Nat. Commun.
,
11
(
1
), p.
4162
.
49.
Liu
,
K.
,
Sun
,
R.
, and
Daraio
,
C.
,
2022
, “
Growth Rules for Irregular Architected Materials With Programmable Properties
,”
Science
,
377
(
6609
), pp.
975
981
.
50.
Liu
,
Y.
,
Xia
,
B.
,
Liu
,
K.
,
Zhou
,
Y.
, and
Wei
,
K.
,
2024
, “
Robustness and Diversity of Disordered Structures on Sound Absorption and Deformation Resistance
,”
J. Mech. Phys. Solids
,
190
, p.
105751
.
51.
Jia
,
Y.
,
Liu
,
K.
, and
Zhang
,
X. S.
,
2024
, “
Modulate Stress Distribution With Bio-inspired Irregular Architected Materials Towards Optimal Tissue Support
,”
Nat. Commun.
,
15
(
1
), p.
4072
.
52.
Jia
,
Y.
,
Liu
,
K.
, and
Zhang
,
X. S.
,
2024
, “
Topology Optimization of Irregular Multiscale Structures With Tunable Responses Using a Virtual Growth Rule
,”
Comput. Methods Appl. Mech. Eng.
,
425
, p.
116864
.
53.
Magrini
,
T.
,
Fox
,
C.
,
Wihardja
,
A.
,
Kolli
,
A.
, and
Daraio
,
C.
,
2024
, “
Control of Mechanical and Fracture Properties in Two-Phase Materials Reinforced by Continuous, Irregular Networks
,”
Adv. Mater.
,
36
(
6
), p.
2305198
.
54.
Fox
,
C.
,
Chen
,
K.
,
Antonini
,
M.
,
Magrini
,
T.
, and
Daraio
,
C.
,
2024
, “
Extracting Geometry and Topology of Orange Pericarps for the Design of Bioinspired Energy Absorbing Materials
,”
Adv. Mater.
,
36
(
36
), p.
2405567
.
55.
Cai
,
C.
,
Tey
,
W. S.
,
Chen
,
J.
,
Zhu
,
W.
,
Liu
,
X.
,
Liu
,
T.
,
Zhao
,
L.
, and
Zhou
,
K.
,
2021
, “
Comparative Study on 3D Printing of Polyamide 12 by Selective Laser Sintering and Multi Jet Fusion
,”
J. Mater. Process. Technol.
,
288
, p.
116882
.
56.
Lee
,
D.
,
Chen
,
W.
,
Wang
,
L.
,
Chan
,
Y. C.
, and
Chen
,
W.
,
2024
, “
Data-Driven Design for Metamaterials and Multiscale Systems: A Review
,”
Adv. Mater.
,
36
(
8
), p.
2305254
.
57.
Olatunji
,
S. O.
,
2021
, “
Modeling Optical Energy Gap of Strontium Titanate Multifunctional Semiconductor Using Stepwise Regression and Genetic Algorithm Based Support Vector Regression
,”
Comput. Mater. Sci.
,
200
, p.
110797
.
58.
Huiskes
,
R.
,
2000
, “
If Bone Is the Answer, Then What Is the Question?
,”
J. Anat.
,
197
(
2
), pp.
145
156
.
59.
Rusch
,
K.
,
1969
, “
Load–Compression Behavior of Flexible Foams
,”
J. Appl. Polym. Sci.
,
13
(
11
), pp.
2297
2311
.
60.
Hanssen
,
A.
,
Hopperstad
,
O. S.
,
Langseth
,
M.
, and
Ilstad
,
H.
,
2002
, “
Validation of Constitutive Models Applicable to Aluminium Foams
,”
Int. J. Mech. Sci.
,
44
(
2
), pp.
359
406
.
61.
Avalle
,
M.
,
Belingardi
,
G.
, and
Ibba
,
A.
,
2007
, “
Mechanical Models of Cellular Solids: Parameters Identification From Experimental Tests
,”
Int. J. Impact Eng.
,
34
(
1
), pp.
3
27
.
62.
Ashby
,
M.F.
, and
Gibson
,
L.J.
,
1997
,
Cellular Solids: Structure and Properties
,
Press Syndicate University of Cambridge
,
Cambridge, UK
, pp.
175
231
.
63.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
,
48
(
6–7
), pp.
1253
1283
.
64.
Khaderi
,
S. N.
,
Scherer
,
M.
,
Hall
,
C.
,
Steiner
,
U.
,
Ramamurty
,
U.
,
Fleck
,
N.
, and
Deshpande
,
V.
,
2017
, “
The Indentation Response of Nickel Nano Double Gyroid Lattices
,”
Extreme Mech. Lett.
,
10
, pp.
15
23
.
65.
Guo
,
X.
,
Wang
,
E.
,
Yang
,
H.
, and
Zhai
,
W.
,
2024
, “
Mechanical Characterization and Constitutive Modeling of Additively-Manufactured Polymeric Materials and Lattice Structures
,”
J. Mech. Phys. Solids
,
189
, p.
105711
.
66.
Babamiri
,
B. B.
,
Askari
,
H.
, and
Hazeli
,
K.
,
2020
, “
Deformation Mechanisms and Post-Yielding Behavior of Additively Manufactured Lattice Structures
,”
Mater. Des.
,
188
, p.
108443
.
67.
Chen
,
C.
,
Fleck
,
N. A.
, and
Lu
,
T. J.
,
2001
, “
The Mode I Crack Growth Resistance of Metallic Foams
,”
J. Mech. Phys. Solids
,
49
(
2
), pp.
231
259
.
68.
San Ha
,
N.
, and
Lu
,
G.
,
2020
, “
A Review of Recent Research on Bio-inspired Structures and Materials for Energy Absorption Applications
,”
Composites Part B
,
181
, p.
107496
.
69.
He
,
Z.
,
Wang
,
F.
,
Zhu
,
Y.
,
Wu
,
H.
, and
Park
,
H. S.
,
2017
, “
Mechanical Properties of Copper Octet-Truss Nanolattices
,”
J. Mech. Phys. Solids
,
101
, pp.
133
149
.
70.
Calladine
,
C.
, and
English
,
R.
,
1984
, “
Strain-Rate and Inertia Effects in the Collapse of Two Types of Energy-Absorbing Structure
,”
Int. J. Mech. Sci.
,
26
(
11–12
), pp.
689
701
.
71.
Gioux
,
G.
,
McCormack
,
T.
, and
Gibson
,
L. J.
,
2000
, “
Failure of Aluminum Foams Under Multiaxial Loads
,”
Int. J. Mech. Sci.
,
42
(
6
), pp.
1097
1117
.
72.
Cerniauskas
,
G.
,
Sadia
,
H.
, and
Alam
,
P.
,
2024
, “
Machine Intelligence in Metamaterials Design: A Review
,”
Oxford Open Mater. Sci.
,
4
(
1
), p.
itae001
.
73.
Lundberg
,
S. M.
, and
Lee
,
S.-I.
,
2017
, “
A Unified Approach to Interpreting Model Predictions
,”
NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems 30
,
Long Beach CA
,
Dec. 4–9
.
You do not currently have access to this content.