Abstract

Finger-like structures emerging from groups of cells at the forefront of cell layer take crucial roles in the migration of collective cell assemblies. However, the mechanics of the finger-like structure has not been fully understood. Here, we constructed a two-dimensional collective cell migration model and quantitatively analyzed the cellular mechanics of finger-like structures during the collective cell migration through experimental study and numerical simulation. We found that substrate stiffness, cell density, cell prestress, and mechanical loading significantly influence the generation and behaviors of the finger-like structures by regulating the lamellipodia spreading area, cellular traction force, and collectivity of cell motion. We showed that the regions with higher maximum principal stress tend to produce larger finger-like structures. Increasing the spreading area of lamellipodia and the velocity of leader cells could promote the generation of higher finger-like structures. For a quantitative understanding of the mechanisms of the effects of these mechanical factors, we adopted a coarse-grained cell model based on the traction-distance law. Our numerical simulation recapitulated the cell velocity distribution, cell motility integrity, cell polarization, and stress distribution in the cell layer observed in the experiment. These analyses revealed the cellular mechanics of the finger-like structure and its roles in collective cell migration. This study provides valuable insights into the collective cell behaviors in tissue engineering and regenerative medicine for biomedical applications.

References

1.
Qin
,
L.
,
Yang
,
D.
,
Yi
,
W.
,
Cao
,
H.
, and
Xiao
,
G.
,
2021
, “
Roles of Leader and Follower Cells in Collective Cell Migration
,”
Mol. Biol. Cell
,
32
(
14
), pp.
1267
1272
.
2.
Shellard
,
A.
, and
Mayor
,
R.
,
2019
, “
Supracellular Migration–Beyond Collective Cell Migration
,”
J. Cell. Sci.
,
132
(
8
), p.
jcs226142
.
3.
Barriga
,
E. H.
, and
Mayor
,
R.
,
2019
, “
Adjustable Viscoelasticity Allows for Efficient Collective Cell Migration
,”
Semin. Cell Dev. Biol.
,
93
, pp.
55
68
.
4.
Reffay
,
M.
,
Parrini
,
M.-C.
,
Cochet-Escartin
,
O.
,
Ladoux
,
B.
,
Buguin
,
A.
,
Coscoy
,
S.
,
Amblard
,
F.
,
Camonis
,
J.
, and
Silberzan
,
P.
,
2014
, “
Interplay of RhoA and Mechanical Forces in Collective Cell Migration Driven by Leader Cells
,”
Nat. Cell Biol.
,
16
(
3
), pp.
217
223
.
5.
Poujade
,
M.
,
Grasland-Mongrain
,
E.
,
Hertzog
,
A.
,
Jouanneau
,
J.
,
Chavrier
,
P.
,
Ladoux
,
B.
,
Buguin
,
A.
, and
Silberzan
,
P.
,
2007
, “
Collective Migration of an Epithelial Monolayer in Response to a Model Wound
,”
Proc. Natl. Acad. Sci.
,
104
(
41
), pp.
15988
15993
.
6.
Cochet-Escartin
,
O.
,
Ranft
,
J.
,
Silberzan
,
P.
, and
Marcq
,
P.
,
2014
, “
Border Forces and Friction Control Epithelial Closure Dynamics
,”
Biophys. J.
,
106
(
1
), pp.
65
73
.
7.
Yang
,
Y.
, and
Levine
,
H.
,
2020
, “
Leader-Cell-Driven Epithelial Sheet Fingering
,”
Phys. Biol.
,
17
(
4
), p.
046003
.
8.
Wang
,
W.
,
2021
, “
Biomimetic Microsystems to Study Cell Migration Mechanoreciprocity in Health and Disease
,” Ph.D. dissertation,
University of Michigan
,
Ann Arbor, MI
.
9.
Friedl
,
P.
, and
Gilmour
,
D.
,
2009
, “
Collective Cell Migration in Morphogenesis, Regeneration and Cancer
,”
Nat. Rev. Mol. Cell Biol.
,
10
(
7
), pp.
445
457
.
10.
Ladoux
,
B.
, and
Mège
,
R.-M.
,
2017
, “
Mechanobiology of Collective Cell Behaviours
,”
Nat. Rev. Mol. Cell Biol.
,
18
(
12
), pp.
743
757
.
11.
Alert
,
R.
, and
Trepat
,
X.
,
2020
, “
Physical Models of Collective Cell Migration
,”
Annu. Rev. Condens. Matter Phys.
,
11
(
1
), pp.
77
101
.
12.
Balcioglu
,
H. E.
,
Balasubramaniam
,
L.
,
Stirbat
,
T. V.
,
Doss
,
B. L.
,
Fardin
,
M. A.
,
Mege
,
R. M.
, and
Ladoux
,
B.
,
2020
, “
A Subtle Relationship Between Substrate Stiffness and Collective Migration of Cell Clusters
,”
Soft Matter
,
16
(
7
), pp.
1825
1839
.
13.
Omelchenko
,
T.
,
Vasiliev
,
J.
,
Gelfand
,
I.
,
Feder
,
H.
, and
Bonder
,
E.
,
2003
, “
Rho-Dependent Formation of Epithelial “Leader” Cells During Wound Healing
,”
Proc. Natl. Acad. Sci.
,
100
(
19
), pp.
10788
10793
.
14.
Khalil
,
A. A.
, and
de Rooij
,
J.
,
2019
, “
Cadherin Mechanotransduction in Leader-Follower Cell Specification During Collective Migration
,”
Exp. Cell Res.
,
376
(
1
), pp.
86
91
.
15.
Farooqui
,
R.
, and
Fenteany
,
G.
,
2005
, “
Multiple Rows of Cells Behind an Epithelial Wound Edge Extend Cryptic Lamellipodia to Collectively Drive Cell-Sheet Movement
,”
J. Cell. Sci.
,
118
(
1
), pp.
51
63
.
16.
Arregui
,
F. J.
,
Ciaurriz
,
Z.
,
Oneca
,
M.
, and
Matıas
,
I. R.
,
2003
, “
An Experimental Study About Hydrogels for the Fabrication of Optical Fiber Humidity Sensors
,”
Sens. Actuators, B
,
96
(
1–2
), pp.
165
172
.
17.
Xu
,
X.
,
Xu
,
J.
,
Li
,
X.
,
Song
,
J.
,
Li
,
D.
, and
Ji
,
B.
,
2022
, “
Quantitative Analyses of Collective Cell Motion on the Patterned Surfaces
,”
ASME J. Appl. Mech.
,
89
(
5
), p.
051005
.
18.
Xu
,
J.
,
Xu
,
X.
,
Li
,
X.
,
He
,
S.
,
Li
,
D.
, and
Ji
,
B.
,
2022
, “
Cellular Mechanics of Wound Formation in Single Cell Layer Under Cyclic Stretching
,”
Biophys. J.
,
121
(
2
), pp.
288
299
.
19.
He
,
S.
,
Su
,
Y.
,
Ji
,
B.
, and
Gao
,
H.
,
2014
, “
Some Basic Questions on Mechanosensing in Cell–Substrate Interaction
,”
J. Mech. Phys. Solids
,
70
, pp.
116
135
.
20.
Chen
,
B.
,
Ji
,
B.
, and
Gao
,
H.
,
2015
, “
Modeling Active Mechanosensing in Cell–Matrix Interactions
,”
Annu. Rev. Biophys.
,
44
(
1
), pp.
1
32
.
21.
Ji
,
B.
,
2021
, “
Mechanobiology and Mechanomedicine: Tuning the Tension in the Life
,” https://imechanica.org/node/25467.
22.
Tlili
,
S.
,
Gauquelin
,
E.
,
Li
,
B.
,
Cardoso
,
O.
,
Ladoux
,
B.
,
Delanoë-Ayari
,
H.
, and
Graner
,
F.
,
2018
, “
Collective Cell Migration Without Proliferation: Density Determines Cell Velocity and Wave Velocity
,”
R. Soc. Open Sci.
,
5
(
5
), p.
172421
.
23.
Xu
,
J.
,
Wang
,
Q.
,
Li
,
X.
,
Zheng
,
Y.
, and
Ji
,
B.
,
2023
, “
Cellular Mechanisms of Wound Closure Under Cyclic Stretching
,”
Biophys. J.
,
122
(
12
), pp.
2404
2420
.
24.
He
,
S.
,
Liu
,
C.
,
Li
,
X.
,
Ma
,
S.
,
Huo
,
B.
, and
Ji
,
B.
,
2015
, “
Dissecting Collective Cell Behavior in Polarization and Alignment on Micropatterned Substrates
,”
Biophys. J.
,
109
(
3
), pp.
489
500
.
25.
He
,
S.
,
Green
,
Y.
,
Saeidi
,
N.
,
Li
,
X.
,
Fredberg
,
J. J.
,
Ji
,
B.
, and
Pismen
,
L. M.
,
2020
, “
A Theoretical Model of Collective Cell Polarization and Alignment
,”
J. Mech. Phys. Solids
,
137
, p.
103860
.
26.
Liu
,
C.
,
Xu
,
J.
,
He
,
S.
,
Zhang
,
W.
,
Li
,
H.
,
Huo
,
B.
, and
Ji
,
B.
,
2018
, “
Collective Cell Polarization and Alignment on Curved Surfaces
,”
J. Mech. Behav. Biomed. Mater.
,
88
, pp.
330
339
.
27.
He
,
S.
,
Li
,
X.
, and
Ji
,
B.
,
2019
, “
Mechanical Force Drives the Polarization and Orientation of Cells
,”
Acta Mech. Sin.
,
35
(
2
), pp.
275
288
.
28.
Ng
,
M. R.
,
Besser
,
A.
,
Danuser
,
G.
, and
Brugge
,
J. S.
,
2012
, “
Substrate Stiffness Regulates Cadherin-Dependent Collective Migration Through Myosin-II Contractility
,”
J. Cell Biol.
,
199
(
3
), pp.
545
563
.
29.
Ji
,
B.
, and
Bao
,
G.
,
2011
, “
Cell and Molecular Biomechanics: Perspectives and Challenges
,”
Acta Mech. Solida Sin.
,
24
(
1
), pp.
27
51
.
30.
Liu
,
Z.
,
Van Grunsven
,
L. A.
,
Van Rossen
,
E.
,
Schroyen
,
B.
,
Timmermans
,
J. P.
,
Geerts
,
A.
, and
Reynaert
,
H.
,
2010
, “
Blebbistatin Inhibits Contraction and Accelerates Migration in Mouse Hepatic Stellate Cells
,”
Br. J. Pharmacol.
,
159
(
2
), pp.
304
315
.
31.
Plosa
,
E. J.
,
Gooding
,
K. A.
,
Zent
,
R.
, and
Prince
,
L. S.
,
2012
, “
Nonmuscle Myosin II Regulation of Lung Epithelial Morphology
,”
Dev. Dyn.
,
241
(
11
), pp.
1770
1781
.
32.
Karki
,
R.
,
Kim
,
S.-B.
, and
Kim
,
D.-W.
,
2013
, “
Magnolol Inhibits Migration of Vascular Smooth Muscle Cells via Cytoskeletal Remodeling Pathway to Attenuate Neointima Formation
,”
Exp. Cell Res.
,
319
(
20
), pp.
3238
3250
.
33.
Tavana
,
H.
,
Kaylan
,
K.
,
Bersano-Begey
,
T.
,
Luker
,
K. E.
,
Luker
,
G. D.
, and
Takayama
,
S.
,
2011
, “
Rehydration of Polymeric, Aqueous, Biphasic System Facilitates High Throughput Cell Exclusion Patterning for Cell Migration Studies
,”
Adv. Funct. Mater.
,
21
(
15
), pp.
2920
2926
.
34.
Nagayama
,
K.
,
Suzuki
,
Y.
, and
Fujiwara
,
D.
,
2019
, “
Directional Dependence of Cyclic Stretch-Induced Cell Migration in Wound Healing Process of Monolayer Cells
,”
Adv. Biomed. Eng.
,
8
, pp.
163
169
.
35.
Greiner
,
A. M.
,
Chen
,
H.
,
Spatz
,
J. P.
, and
Kemkemer
,
R.
,
2013
, “
Cyclic Tensile Strain Controls Cell Shape and Directs Actin Stress Fiber Formation and Focal Adhesion Alignment in Spreading Cells
,”
PLoS One
,
8
(
10
), p.
e77328
.
36.
Dokukina
,
I. V.
, and
Gracheva
,
M. E.
,
2010
, “
A Model of Fibroblast Motility on Substrates With Different Rigidities
,”
Biophys. J.
,
98
(
12
), pp.
2794
2803
.
37.
Lin
,
L.
, and
Zeng
,
X.
,
2018
, “
Numerical Investigation of the Role of Intercellular Interactions on Collective Epithelial Cell Migration
,”
Biomech. Model. Mechanobiol.
,
17
(
2
), pp.
439
448
.
38.
Trepat
,
X.
, and
Fredberg
,
J. J.
,
2011
, “
Plithotaxis and Emergent Dynamics in Collective Cellular Migration
,”
Trends Cell Biol.
,
21
(
11
), pp.
638
646
.
39.
Liu
,
Z.
,
Tan
,
J. L.
,
Cohen
,
D. M.
,
Yang
,
M. T.
,
Sniadecki
,
N. J.
,
Ruiz
,
S. A.
,
Nelson
,
C. M.
, and
Chen
,
C. S.
,
2010
, “
Mechanical Tugging Force Regulates the Size of Cell–Cell Junctions
,”
Proc. Natl. Acad. Sci.
,
107
(
22
), pp.
9944
9949
.
40.
Schwarz
,
U.
, and
Safran
,
S.
,
2002
, “
Elastic Interactions of Cells
,”
Phys. Rev. Lett.
,
88
(
4
), pp.
481021
481024
.
41.
Mandal
,
K.
,
Wang
,
I.
,
Vitiello
,
E.
,
Orellana
,
L. A. C.
, and
Balland
,
M.
,
2014
, “
Cell Dipole Behaviour Revealed by ECM Sub-Cellular Geometry
,”
Nat. Commun.
,
5
(
1
), p.
5749
.
42.
Stricker
,
J.
,
Aratyn-Schaus
,
Y.
,
Oakes
,
P. W.
, and
Gardel
,
M. L.
,
2011
, “
Spatiotemporal Constraints on the Force-Dependent Growth of Focal Adhesions
,”
Biophys. J.
,
100
(
12
), pp.
2883
2893
.
43.
Koride
,
S.
,
Loza
,
A. J.
, and
Sun
,
S. X.
,
2018
, “
Epithelial Vertex Models With Active Biochemical Regulation of Contractility Can Explain Organized Collective Cell Motility
,”
APL Bioeng.
,
2
(
3
), p.
031906
.
44.
Zhong
,
Y.
, and
Ji
,
B.
,
2014
, “
How Do Cells Produce and Regulate the Driving Force in the Process of Migration?
,”
Eur. Phys. J.: Spec. Top.
,
223
(
7
), pp.
1373
1390
.
45.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
,
1996
, “
VMD: Visual Molecular Dynamics
,”
J. Mol. Graphics
,
14
(
1
), pp.
33
38
.
46.
Subramaniyan
,
A. K.
, and
Sun
,
C.
,
2008
, “
Continuum Interpretation of Virial Stress in Molecular Simulations
,”
Int. J. Solids Struct.
,
45
(
14–15
), pp.
4340
4346
.
47.
Cormier
,
J.
,
Rickman
,
J.
, and
Delph
,
T.
,
2001
, “
Stress Calculation in Atomistic Simulations of Perfect and Imperfect Solids
,”
J. Appl. Phys.
,
89
(
1
), pp.
99
104
.
You do not currently have access to this content.