Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Flexible piezoelectric energy harvesters (FPEHs) have attracted tremendous attention due to their potential applications in the field of biomedicine, such as powering implantable devices. Despite observations in numerous in vivo experiments that the electrical output of FPEHs varies considerably with sewing positions during energy harvesting from heartbeats, optimal sewing positions have not been thoroughly investigated. In this article, an approach that integrates finite element analysis (FEA), long short-term memory (LSTM) deep learning method, and theoretical modeling was proposed to investigate the impact of the sewing position on the harvest performance of the FPEH, utilizing real three-dimensional heart deformation data as the end-to-end displacement load for the FPEH. The results reveal that the sewing positions have a significant influence on the electric output performance of the FPEH. The optimal sewing position was identified near the posterior interventricular groove on the upper part of the left ventricle, with a corresponding optimal resistance value of 8 MΩ and an output power of 122.9 nW. Additionally, five suggested sewing positions across different regions of the heart's surface were provided for clinical application. The methodology that integrates FEA, deep learning approach, and theoretical modeling in this article can be extended to determine the optimal position for the flexible devices patching on other irregular and deforming surfaces.

References

1.
Mond
,
H. G.
, and
Proclemer
,
A.
,
2011
, “
The 11th World Survey of Cardiac Pacing and Implantable Cardioverter-Defibrillators: Calendar Year 2009—A World Society of Arrhythmia’s Project
,”
Pacing Clin. Electrophysiol.
,
34
(
8
), pp.
1013
1027
.
2.
Shintaku
,
H.
,
Nakagawa
,
T.
,
Kitagawa
,
D.
,
Tanujaya
,
H.
,
Kawano
,
S.
, and
Ito
,
J.
,
2010
, “
Development of Piezoelectric Acoustic Sensor With Frequency Selectivity for Artificial Cochlea
,”
Sens. Actuators, A
,
158
(
2
), pp.
183
192
.
3.
Landolina
,
M.
,
Curnis
,
A.
,
Morani
,
G.
,
Vado
,
A.
,
Ammendola
,
E.
,
D'Onofrio
,
A.
,
Stabile
,
G.
, et al
,
2015
, “
Longevity of Implantable Cardioverter-Defibrillators for Cardiac Resynchronization Therapy in Current Clinical Practice: An Analysis According to Influencing Factors, Device Generation, and Manufacturer
,”
Europace
,
17
(
8
), pp.
1251
1258
.
4.
Mallela
,
V. S.
,
Ilankumaran
,
V.
, and
Rao
,
S. N.
,
2004
, “
Trends in Cardiac Pacemaker Batteries
,”
Indian Pacing Electrophysiol. J.
,
4
(
4
), pp.
201
212
.
5.
Poole
,
J. E.
,
Gleva
,
M. J.
,
Mela
,
T.
,
Chung
,
M. K.
,
Uslan
,
D. Z.
,
Borge
,
R.
,
Gottipaty
,
V.
, et al
,
2010
, “
Complication Rates Associated With Pacemaker or Implantable Cardioverter-Defibrillator Generator Replacements and Upgrade Procedures: Results From the REPLACE Registry
,”
Circulation
,
122
(
16
), pp.
1553
1561
.
6.
Griffith
,
M. J.
,
Mounsey
,
J. P.
,
Bexton
,
R. S.
, and
Holden
,
M. P.
,
1994
, “
Mechanical, But Not Infective, Pacemaker Erosion May Be Successfully Managed by Re-Implantation of Pacemakers
,”
Br. Heart J.
,
71
(
2
), pp.
202
205
.
7.
Starner
,
T.
,
1996
, “
Human-Powered Wearable Computing
,”
IBM Syst. J.
,
35
(
3–4
), pp.
618
629
.
8.
Dagdeviren
,
C.
,
Yang
,
B. D.
,
Su
,
Y.
,
Tran
,
P. L.
,
Joe
,
P.
,
Anderson
,
E.
,
Xia
,
J.
, et al
,
2014
, “
Conformal Piezoelectric Energy Harvesting and Storage From Motions of the Heart, Lung, and Diaphragm
,”
Proc. Natl. Acad. Sci. U.S.A.
,
111
(
5
), pp.
1927
1932
.
9.
Kerzenmacher
,
S.
,
Ducrée
,
J.
,
Zengerle
,
R.
, and
von Stetten
,
F.
,
2008
, “
Energy Harvesting by Implantable Abiotically Catalyzed Glucose Fuel Cells
,”
J. Power Sources
,
182
(
1
), pp.
1
17
.
10.
Jin
,
Q.
,
Shi
,
W.
,
Zhao
,
Y.
,
Qiao
,
J.
,
Qiu
,
J.
,
Sun
,
C.
,
Lei
,
H.
,
Tai
,
K.
, and
Jiang
,
X.
,
2018
, “
Cellulose Fiber-Based Hierarchical Porous Bismuth Telluride for High-Performance Flexible and Tailorable Thermoelectrics
,”
ACS Appl. Mater. Interfaces
,
10
(
2
), pp.
1743
1751
.
11.
Anton
,
S. R.
, and
Sodano
,
H. A.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
,
16
(
3
), pp.
R1
R21
.
12.
Shenck
,
N. S.
, and
Paradiso
,
J. A.
,
2001
, “
Energy Scavenging With Shoe-Mounted Piezoelectrics
,”
IEEE Micro
,
21
(
3
), pp.
30
42
.
13.
Platt
,
S. R.
,
Farritor
,
S.
, and
Haider
,
H.
,
2005
, “
On Low-Frequency Electric Power Generation With PZT Ceramics
,”
IEEE/ASME Trans. Mechatron.
,
10
(
2
), pp.
240
252
.
14.
Häsler
,
E.
,
Stein
,
L.
, and
Harbauer
,
G.
,
2011
, “
Implantable Physiological Power Supply With PVDF Film
,”
Ferroelectrics
,
60
(
1
), pp.
277
282
.
15.
Sohn
,
J. W.
,
Choi
,
S. B.
, and
Lee
,
D. Y.
,
2005
, “
An Investigation on Piezoelectric Energy Harvesting for MEMS Power Sources
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
219
(
4
), pp.
429
436
.
16.
Zhang
,
H.
,
Zhang
,
X.-S.
,
Cheng
,
X.
,
Liu
,
Y.
,
Han
,
M.
,
Xue
,
X.
,
Wang
,
S.
, et al
,
2015
, “
A Flexible and Implantable Piezoelectric Generator Harvesting Energy From the Pulsation of Ascending Aorta: In Vitro and In Vivo Studies
,”
Nano Energy
,
12
, pp.
296
304
.
17.
Li
,
Z.
,
Zhu
,
G.
,
Yang
,
R.
,
Wang
,
A. C.
, and
Wang
,
Z. L.
,
2010
, “
Muscle-Driven In Vivo Nanogenerator
,”
Adv. Mater.
,
22
(
23
), pp.
2534
2537
.
18.
Lu
,
B.
,
Chen
,
Y.
,
Ou
,
D.
,
Chen
,
H.
,
Diao
,
L.
,
Zhang
,
W.
,
Zheng
,
J.
,
Ma
,
W.
,
Sun
,
L.
, and
Feng
,
X.
,
2015
, “
Ultra-Flexible Piezoelectric Devices Integrated With Heart to Harvest the Biomechanical Energy
,”
Sci. Rep.
,
5
(
1
), p.
16065
.
19.
Jeong
,
C. K.
,
Han
,
J. H.
,
Palneedi
,
H.
,
Park
,
H.
,
Hwang
,
G.-T.
,
Joung
,
B.
,
Kim
,
S.-G.
, et al
,
2017
, “
Comprehensive Biocompatibility of Nontoxic and High-Output Flexible Energy Harvester Using Lead-Free Piezoceramic Thin Film
,”
APL Mater.
,
5
(
7
), p.
074102
.
20.
Kim
,
D. H.
,
Shin
,
H. J.
,
Lee
,
H.
,
Jeong
,
C. K.
,
Park
,
H.
,
Hwang
,
G. T.
,
Lee
,
H. Y.
, et al
,
2017
, “
In Vivo Self-Powered Wireless Transmission Using Biocompatible Flexible Energy Harvesters
,”
Adv. Funct. Mater.
,
27
(
25
), p.
1700341
.
21.
Xu
,
Z.
,
Jin
,
C.
,
Cabe
,
A.
,
Escobedo
,
D.
,
Gruslova
,
A.
,
Jenney
,
S.
,
Closson
,
A. B.
, et al
,
2021
, “
Implantable Cardiac Kirigami-Inspired Lead-Based Energy Harvester Fabricated by Enhanced Piezoelectric Composite Film
,”
Adv. Healthcare Mater.
,
10
(
8
), p.
2002100
.
22.
Kondapalli
,
S. H.
,
Alazzawi
,
Y.
,
Malinowski
,
M.
,
Timek
,
T.
, and
Chakrabartty
,
S.
,
2018
, “
Feasibility of Self-Powering and Energy Harvesting Using Cardiac Valvular Perturbations
,”
IEEE Trans. Biomed. Circuits Syst.
,
12
(
6
), pp.
1392
1400
.
23.
Li
,
N.
,
Yi
,
Z.
,
Ma
,
Y.
,
Xie
,
F.
,
Huang
,
Y.
,
Tian
,
Y.
,
Dong
,
X.
, et al
,
2019
, “
Direct Powering a Real Cardiac Pacemaker by Natural Energy of a Heartbeat
,”
ACS Nano
,
13
(
3
), pp.
2822
2830
.
24.
Zhang
,
Y.
,
,
C.
,
Lu
,
B.
,
Feng
,
X.
, and
Wang
,
J.
,
2019
, “
Effects of Orientations on Efficiency of Energy Harvesting From Heart Motion Using Ultrathin Flexible Piezoelectric Devices
,”
Adv. Theor. Simul.
,
2
(
7
), p.
1900050
.
25.
Zhang
,
Y.
,
Wang
,
J.
, and
,
C.
,
2022
, “
Optimal Patching Locations and Orientations for Maximum Energy Harvesting Efficiency of Ultrathin Flexible Piezoelectric Devices Mounted on Heart Surface
,”
Theor. Appl. Mech. Lett.
,
12
(
3
), p.
100341
.
26.
Zhang
,
Y.
,
Chen
,
Y.
,
Lu
,
B.
,
,
C.
, and
Feng
,
X.
,
2016
, “
Electromechanical Modeling of Energy Harvesting From the Motion of Left Ventricle in Closed Chest Environment
,”
ASME J. Appl. Mech.
,
83
(
6
), p.
061007
.
27.
Huang
,
W.
,
Wang
,
Y.
,
Li
,
X.
, and
Jawed
,
M. K.
,
2020
, “
Shear Induced Supercritical Pitchfork Bifurcation of Pre-Buckled Bands, From Narrow Strips to Wide Plates
,”
J. Mech. Phys. Solids
,
145
, p.
104168
.
28.
Wagner
,
T. J. W.
, and
Vella
,
D.
,
2013
, “
The ‘Sticky Elastica’: Delamination Blisters Beyond Small Deformations
,”
Soft Matter
,
9
(
4
), pp.
1025
1030
.
29.
Baillargeon
,
B.
,
Rebelo
,
N.
,
Fox
,
D. D.
,
Taylor
,
R. L.
, and
Kuhl
,
E.
,
2014
, “
The Living Heart Project: A Robust and Integrative Simulator for Human Heart Function
,”
Eur. J. Mech. A. Solids
,
48
, pp.
38
47
.
30.
Gers
,
F. A.
,
Schmidhuber
,
J.
, and
Cummins
,
F.
,
2000
, “
Learning to Forget: Continual Prediction With LSTM
,”
Neural Comput.
,
12
(
10
), pp.
2451
2471
.
You do not currently have access to this content.