Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The flexoelectric effect, characterized by the induction of electric polarization by strain gradients, exhibits a remarkable size dependence. This makes flexoelectricity highly relevant for nanoscale electromechanical systems. Inevitably, flexoelectric solids, like all materials, are susceptible to various types of defects. These defects significantly influence the local electromechanical coupling phenomena, thereby affecting the performance of flexoelectric materials. This study investigates ellipsoidal inclusions in flexoelectric solids, a fundamental and classical defect type. We present Green’s functions for flexoelectricity, which is the basis for formulating the eigen deformation problem within flexoelectricity theory. We then derive the expressions for strain dilatation, electric potential, and polarization magnitude under a constant eigenstrain dilatation scenario, which allows us to effectively address the ellipsoidal inclusion problem in flexoelectric solids. The investigation then extends to different ellipsoidal inclusions, shedding light on their distinctive shape and size effects. The insights gained from this study provide perspectives on the potential failure mechanisms in defective flexoelectric solids and lay a theoretical foundation for the design of nanoscale flexoelectric systems.

References

1.
Eshelby
,
J. D.
, and
Peierls
,
R. E.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. Lond. A
,
241
(
1226
), pp.
376
396
.
2.
Eshelby
,
J. D.
, and
Peierls
,
R. E.
,
1959
, “
The Elastic Field Outside an Ellipsoidal Inclusion
,”
Proc. R. Soc. Lond. A
,
252
(
1271
), pp.
561
569
.
3.
Lubarda
,
V.
, and
Markenscoff
,
X.
,
1998
, “
On the Absence of Eshelby Property for Non-ellipsoidal Inclusions
,”
Int. J. Solids Struct.
,
35
(
25
), pp.
3405
3411
.
4.
Franciosi
,
P.
,
2005
, “
On the Modified Green Operator Integral for Polygonal, Polyhedral and Other Non-ellipsoidal Inclusions
,”
Int. J. Solids Struct.
,
42
(
11
), pp.
3509
3531
.
5.
Jasiuk
,
I.
,
Sheng
,
P. Y.
, and
Tsuchida
,
E.
,
1997
, “
A Spherical Inclusion in an Elastic Half-Space Under Shear
,”
ASME J. Appl. Mech.
,
64
(
3
), pp.
471
479
.
6.
Lee
,
Y.-G.
,
Zou
,
W.-N.
, and
Ren
,
H.-H.
,
2016
, “
Eshelby’s Problem of Inclusion With Arbitrary Shape in an Isotropic Elastic Half-Plane
,”
Int. J. Solids Struct.
,
81
, pp.
399
410
.
7.
Mura
,
T.
, and
Lin
,
S. C.
,
1974
, “
Thin Inclusions and Cracks in Anisotropic Media
,”
ASME J. Appl. Mech.
,
41
(
1
), pp.
209
214
.
8.
Moschovidis
,
Z. A.
, and
Mura
,
T.
,
1975
, “
Two-Ellipsoidal Inhomogeneities by the Equivalent Inclusion Method
,”
ASME J. Appl. Mech.
,
42
(
4
), pp.
847
852
.
9.
Taya
,
M.
, and
Chou
,
T.-W.
,
1981
, “
On Two Kinds of Ellipsoidal Inhomogeneities in an Infinite Elastic Body: An Application to a Hybrid Composite
,”
Int. J. Solids Struct.
,
17
(
6
), pp.
553
563
.
10.
Michelitsch
,
T. M.
,
Gao
,
H.
, and
Levin
,
V. M.
,
2003
, “
Dynamic Eshelby Tensor and Potentials for Ellipsoidal Inclusions
,”
Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci.
,
459
(
2032
), pp.
863
890
.
11.
Ni
,
L.
, and
Markenscoff
,
X.
,
2015
, “
On Self-similarly Expanding Eshelby Inclusions: Spherical Inclusion With Dilatational Eigenstrain
,”
Mech. Mater.
,
90
, pp.
30
36
.
12.
Ni
,
L.
, and
Markenscoff
,
X.
,
2016
, “
The Dynamic Generalization of the Eshelby Inclusion Problem and Its Static Limit
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
472
(
2191
), p.
20160256
.
13.
Li
,
S.
,
Sauer
,
R. A.
, and
Wang
,
G.
,
2006
, “
The Eshelby Tensors in a Finite Spherical Domain—Part I: Theoretical Formulations
,”
ASME J. Appl. Mech.
,
74
(
4
), pp.
770
783
.
14.
Li
,
S.
,
Wang
,
G.
, and
Sauer
,
R. A.
,
2006
, “
The Eshelby Tensors in a Finite Spherical Domain—Part II: Applications to Homogenization
,”
ASME J. Appl. Mech.
,
74
(
4
), pp.
784
797
.
15.
Cheng
,
Z.-Q.
, and
He
,
L.-H.
,
1995
, “
Micropolar Elastic Fields Due to a Spherical Inclusion
,”
Int. J. Eng. Sci.
,
33
(
3
), pp.
389
397
.
16.
Cheng
,
Z.-Q.
, and
He
,
L.-H.
,
1997
, “
Micropolar Elastic Fields Due to a Circular Cylindrical Inclusion
,”
Int. J. Eng. Sci.
,
35
(
7
), pp.
659
668
.
17.
Ma
,
H.
, and
Hu
,
G.
,
2006
, “
Eshelby Tensors for an Ellipsoidal Inclusion in a Micropolar Material
,”
Int. J. Eng. Sci.
,
44
(
8
), pp.
595
605
.
18.
Ma
,
H.
, and
Hu
,
G.
,
2007
, “
Eshelby Tensors for an Ellipsoidal Inclusion in a Microstretch Material
,”
Int. J. Solids Struct.
,
44
(
9
), pp.
3049
3061
.
19.
Zhang
,
X.
, and
Sharma
,
P.
,
2005
, “
Inclusions and Inhomogeneities in Strain Gradient Elasticity With Couple Stresses and Related Problems
,”
Int. J. Solids Struct.
,
42
(
13
), pp.
3833
3851
.
20.
Gao
,
X.-L.
, and
Ma
,
H.
,
2010
, “
Solution of Eshelby’s Inclusion Problem With a Bounded Domain and Eshelby’s Tensor for a Spherical Inclusion in a Finite Spherical Matrix Based on a Simplified Strain Gradient Elasticity Theory
,”
J. Mech. Phys. Solids
,
58
(
5
), pp.
779
797
.
21.
Gao
,
X.-L.
, and
Liu
,
M.
,
2012
, “
Strain Gradient Solution for the Eshelby-Type Polyhedral Inclusion Problem
,”
J. Mech. Phys. Solids
,
60
(
2
), pp.
261
276
.
22.
Ma
,
H.
,
Hu
,
G.
,
Wei
,
Y.
, and
Liang
,
L.
,
2018
, “
Inclusion Problem in Second Gradient Elasticity
,”
Int. J. Eng. Sci.
,
132
, pp.
60
78
.
23.
Krichen
,
S.
, and
Sharma
,
P.
,
2016
, “
Flexoelectricity: A Perspective on an Unusual Electromechanical Coupling
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
030801
.
24.
Yvonnet
,
J.
,
Chen
,
X.
, and
Sharma
,
P.
,
2020
, “
Apparent Flexoelectricity Due to Heterogeneous Piezoelectricity
,”
ASME J. Appl. Mech.
,
87
(
11
), p.
111003
.
25.
Xie
,
J.
,
McAvoy
,
R.
, and
Linder
,
C.
,
2024
, “
An Analytical Model for Nanoscale Flexoelectric Doubly Curved Shells
,”
Math. Mech. Solids
,
29
(
2
), pp.
278
302
.
26.
Mao
,
S.
, and
Purohit
,
P. K.
,
2015
, “
Defects in Flexoelectric Solids
,”
J. Mech. Phys. Solids
,
84
, pp.
95
115
.
27.
Profant
,
T.
,
Sládek
,
J.
,
Sládek
,
V.
, and
Kotoul
,
M.
,
2023
, “
Assessment of Amplitude Factors of Asymptotic Expansion at Crack Tip in Flexoelectric Solid Under Mode I and II Loadings
,”
Int. J. Solids Struct.
,
269
, p.
112194
.
28.
Xie
,
J.
, and
Linder
,
C.
,
2023
, “
Analysis of Flexoelectric Solids With a Cylindrical Cavity
,”
ASME J. Appl. Mech.
,
91
(
1
), p.
011007
.
29.
Xie
,
J.
, and
Linder
,
C.
,
2024
, “
Circular Cavities and Inhomogeneities in Anti-plane Flexoelectricity
,”
Eur. J. Mech. A/Solids
,
105
, p.
105251
.
30.
Xie
,
J.
, and
Linder
,
C.
,
2024
, “
Plane Strain Problem of Flexoelectric Cylindrical Inhomogeneities
,”
Int. J. Solids Struct.
,
289
, p.
112649
.
31.
Maranganti
,
R.
,
Sharma
,
N. D.
, and
Sharma
,
P.
,
2006
, “
Electromechanical Coupling in Nonpiezoelectric Materials Due to Nanoscale Nonlocal Size Effects: Green’s Function Solutions and Embedded Inclusions
,”
Phys. Rev. B
,
74
, p.
014110
.
32.
Yang
,
S.
, and
Shen
,
S.
,
2014
, “
Anti-plane Circular Nano-inclusion Problem With Electric Field Gradient and Strain Gradient Effects
,”
Comput. Mater. Continua
,
40
(
3
), pp.
219
239
.
33.
Sharma
,
N.
,
Maranganti
,
R.
, and
Sharma
,
P.
,
2007
, “
On the Possibility of Piezoelectric Nanocomposites Without Using Piezoelectric Materials
,”
J. Mech. Phys. Solids
,
55
(
11
), pp.
2328
2350
.
34.
Mao
,
S.
, and
Purohit
,
P. K.
,
2014
, “
Insights Into Flexoelectric Solids From Strain-Gradient Elasticity
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081004
.
35.
Assali
,
A.
,
Kanouni
,
F.
,
Laidoudi
,
F.
,
Arab
,
F.
, and
Bouslama
,
M.
,
2020
, “
Structural and Electromechanical Properties of SR-Substituted Barium Titanate (BST) as Potential Material for High Performance Electroacoustic Devices
,”
Mater. Today Commun.
,
25
, pp.
101643
.
36.
Hou
,
Y.
,
Tian
,
D.
, and
Chu
,
B.
,
2020
, “
Flexoelectric Response of (1x)BaTiO3xSrTiO3 Ceramics
,”
Ceram. Int.
,
46
(
9
), pp.
12928
12932
.
You do not currently have access to this content.