Abstract

Biohybrid actuators aim to leverage the various advantages of biological cells over artificial components to build novel compliant machines with high performance and autonomy. Significant advances have been made in bio-fabrication technologies, enabling the realization of muscle-powered bio-actuators. However, the mechanics of muscle-scaffold coupling has been relatively understudied, limiting the development of bio-actuators to intuitive or biomimetic designs. Here, we consider the case of implementing muscle-based actuation for soft robotic swimmers operating at low Reynolds numbers. We develop an analytical model to describe the elasto-hydrodynamic problem and identify key design parameters. Muscle contraction dynamics is characterized experimentally and the implications of nonlinear amplitude-frequency relationship of muscle-based actuation are discussed. We show that a novel bio-actuator with high performance can be developed by introducing compliant flexural mechanisms undergoing large deflection. Geometric nonlinearities are accounted for in the analysis of the force-deflection relationship for the flexural mechanism. Our results show that for expected muscle contraction forces, this novel bio-actuator can outperform previous muscle-powered swimmers by up to two orders of magnitude in swimming speed.

References

1.
Chan
,
V.
,
Asada
,
H. H.
, and
Bashir
,
R.
,
2014
, “
Utilization and Control of Bioactuators Across Multiple Length Scales
,”
Lab. Chip
,
14
(
4
), pp.
653
670
.
2.
Feinberg
,
A. W.
,
2015
, “
Biological Soft Robotics
,”
Annu. Rev. Biomed. Eng.
,
17
(
1
), pp.
243
265
.
3.
Ricotti
,
L.
,
Trimmer
,
B.
,
Feinberg
,
A. W.
,
Raman
,
R.
,
Parker
,
K. K.
,
Bashir
,
R.
,
Sitti
,
M.
,
Martel
,
S.
,
Dario
,
P.
, and
Menciassi
,
A.
,
2017
, “
Biohybrid Actuators for Robotics: A Review of Devices Actuated by Living Cells
,”
Sci. Rob.
,
2
(
12
), pp.
1
18
.
4.
Sun
,
L.
,
Yu
,
Y.
,
Chen
,
Z.
,
Bian
,
F.
,
Ye
,
F.
,
Sun
,
L.
, and
Zhao
,
Y.
,
2020
, “
Biohybrid Robotics With Living Cell Actuation
,”
Chem. Soc. Rev.
,
49
(
12
), pp.
4043
4069
.
5.
Gao
,
L.
,
Usman Akhtar
,
M.
,
Yang
,
F.
,
Ahmad
,
S.
,
He
,
J.
,
Lian
,
Q.
,
Cheng
,
W.
,
Zhang
,
J.
, and
Li
,
D.
,
2021
, “
Recent Progress in Engineering Functional Biohybrid Robots Actuated by Living Cells
,”
Acta Biomater.
,
121
, pp.
29
40
.
6.
Mestre
,
R.
,
Patiño
,
T.
, and
Sánchez
,
S.
,
2021
, “
Biohybrid Robotics: From the Nanoscale to the Macroscale
,”
WIREs Nanomed. Nanobiotechnol.
,
13
(
5
), p.
e1703
.
7.
Webster-Wood
,
V. A.
,
Guix
,
M.
,
Xu
,
N. W.
,
Behkam
,
B.
,
Sato
,
H.
,
Sarkar
,
D.
,
Sanchez
,
S.
,
Shimizu
,
M.
, and
Parker
,
K. K.
,
2023
, “
Biohybrid Robots: Recent Progress, Challenges, and Perspectives
,”
Bioinspir. Biomimet.
,
18
(
1
), p.
015001
.
8.
Palagi
,
S.
, and
Fischer
,
P.
,
2018
, “
Bioinspired Microrobots
,”
Nat. Rev. Mater.
,
3
(
6
), pp.
113
124
.
9.
Raman
,
R.
, and
Bashir
,
R.
,
2017
, “
Biomimicry, Biofabrication, and Biohybrid Systems: The Emergence and Evolution of Biological Design
,”
Adv. Healthc. Mater.
,
6
(
20
), p.
1700496
.
10.
Howell
,
L. L.
,
2013
,
Compliant Mechanisms
,
Springer
,
London
.
11.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
12.
Polygerinos
,
P.
,
Correll
,
N.
,
Morin
,
S. A.
,
Mosadegh
,
B.
,
Onal
,
C. D.
,
Petersen
,
K.
,
Cianchetti
,
M.
,
Tolley
,
M. T.
, and
Shepherd
,
R. F.
,
2017
, “
Soft Robotics: Review of Fluid-Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Human-Robot Interaction
,”
Adv. Eng. Mater.
,
19
(
12
), p.
1700016
.
13.
Rich
,
S. I.
,
Wood
,
R. J.
, and
Majidi
,
C.
,
2018
, “
Untethered Soft Robotics
,”
Nat. Electron.
,
1
(
2
), pp.
102
112
.
14.
Pfeifer
,
R.
,
Lungarella
,
M.
, and
Iida
,
F.
,
2007
, “
Self-Organization, Embodiment, and Biologically Inspired Robotics
,”
Science
,
318
(
5853
), pp.
1088
1093
.
15.
Egan
,
P.
,
Sinko
,
R.
,
Leduc
,
P. R.
, and
Keten
,
S.
,
2015
, “
The Role of Mechanics in Biological and Bio-Inspired Systems
,”
Nat. Commun.
,
6
(
May
), pp.
1
12
.
16.
Kamm
,
R. D.
,
Bashir
,
R.
,
Arora
,
N.
,
Dar
,
R. D.
,
Gillette
,
M. U.
,
Griffith
,
L. G.
,
Kemp
,
M. L.
, et al
,
2018
, “
Perspective: The Promise of Multi-cellular Engineered Living Systems
,”
APL Bioeng.
,
2
(
4
), p.
040901
.
17.
Aydin
,
O.
,
Passaro
,
A. P.
,
Raman
,
R.
,
Spellicy
,
S. E.
,
Weinberg
,
R. P.
,
Kamm
,
R. D.
,
Sample
,
M.
, et al
,
2022
, “
Principles for the Design of Multicellular Engineered Living Systems
,”
APL Bioeng.
,
6
(
1
), p.
010903
.
18.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
,
2001
, “
Topology Optimization of Continuum Structures: A Review
,”
ASME Appl. Mech. Rev.
,
54
(
4
), pp.
331
390
.
19.
Saxena
,
A.
, and
Kramer
,
S. N.
,
1998
, “
A Simple and Accurate Method for Determining Large Deflections in Compliant Mechanisms Subjected to End Forces and Moments
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
392
400
.
20.
Dado
,
M. H.
,
2001
, “
Variable Parametric Pseudo-Rigid-Body Model for Large-Deflection Beams With End Loads
,”
Int. J. Non Linear Mech.
,
36
(
7
), pp.
1123
1133
.
21.
Zhang
,
X.
,
Chan
,
F. K.
,
Parthasarathy
,
T.
, and
Gazzola
,
M.
,
2019
, “
Modeling and Simulation of Complex Dynamic Musculoskeletal Architectures
,”
Nat. Commun.
,
10
(
1
), p.
4825
.
22.
Pagan-Diaz
,
G. J.
,
Zhang
,
X.
,
Grant
,
L.
,
Kim
,
Y.
,
Aydin
,
O.
,
Cvetkovic
,
C.
,
Ko
,
E.
, et al
,
2018
, “
Simulation and Fabrication of Stronger, Larger, and Faster Walking Biohybrid Machines
,”
Adv. Funct. Mater.
,
28
(
23
), pp.
1
13
.
23.
Wang
,
J.
,
Zhang
,
X.
,
Park
,
J.
,
Park
,
I.
,
Kilicarslan
,
E.
,
Kim
,
Y.
,
Dou
,
Z.
,
Bashir
,
R.
, and
Gazzola
,
M.
,
2021
, “
Computationally Assisted Design and Selection of Maneuverable Biological Walking Machines
,”
Adv. Intell. Syst.
,
3
(
5
), p.
2000237
.
24.
Purcell
,
E. M.
,
1977
, “
Life at Low Reynolds Number
,”
Am. J. Phys.
,
45
(
1
), pp.
3
11
.
25.
Brennen
,
C.
, and
Winet
,
H.
,
1977
, “
Fluid Mechanics of Propulsion by Cilia and Flagella
,”
Annu. Rev. Fluid Mech.
,
9
(
1
), pp.
339
398
.
26.
Blum
,
J. J.
, and
Hines
,
M.
,
1979
, “
Biophysics of Flagellar Motility
,”
Q. Rev. Biophys.
,
12
(
2
), pp.
103
180
.
27.
Gibbons
,
I. R.
,
1981
, “
Cilia and Flagella of Eukaryotes
,”
J. Cell Biol.
,
91
(
3 II
), pp.
107s
124s
.
28.
Williams
,
B. J.
,
Anand
,
S. V.
,
Rajagopalan
,
J.
, and
Saif
,
M. T. A.
,
2014
, “
A Self-Propelled Bio-Hybrid Swimmer at Low Reynolds Number
,”
Nat. Commun.
,
5
(
1
), pp.
1
8
.
29.
Aydin
,
O.
,
Zhang
,
X.
,
Nuethong
,
S.
,
Pagan-Diaz
,
G. J.
,
Bashir
,
R.
,
Gazzola
,
M.
, and
Saif
,
M. T. A.
,
2019
, “
Neuromuscular Actuation of Biohybrid Motile Bots
,”
Proc. Natl. Acad. Sci.
,
116
(
40
), pp.
19841
19847
.
30.
Gray
,
G.
, and
Hancock
,
J.
,
1955
, “
The Propulsion of Sea-Urchin Spermatozoa
,”
J. Exp. Biol.
,
32
(
4
), pp.
802
814
.
31.
Machin
,
K. E.
,
1958
, “
Wave Propagation Along Flagella
,”
J. Exp. Biol.
,
35
(
4
), pp.
796
806
.
32.
Wiggins
,
C. H.
, and
Goldstein
,
R. E.
,
1998
, “
Flexive and Propulsive Dynamics of Elastica at Low Reynolds Number
,”
Phys. Rev. Lett.
,
80
(
17
), pp.
3879
3882
.
33.
Wiggins
,
C. H.
,
Riveline
,
D.
,
Ott
,
A.
, and
Goldstein
,
R. E.
,
1998
, “
Trapping and Wiggling: Elastohydrodynamics of Driven Microfilaments
,”
Biophys. J.
,
74
(
2 I
), pp.
1043
1060
.
34.
Lauga
,
E.
,
2007
, “
Floppy Swimming: Viscous Locomotion of Actuated Elastica
,”
Phys. Rev. E - Stat. Nonlinear Soft Matter Phys.
,
75
(
4
), pp.
1
16
.
35.
De Mestre
,
N. J.
, and
Russel
,
W. B.
,
1975
, “
Low-Reynolds-Number Translation of a Slender Cylinder Near a Plane Wall
,”
J. Eng. Math.
,
9
(
2
), pp.
81
91
.
36.
Stalnaker
,
J. F.
, and
Hussey
,
R. G.
,
1979
, “
Wall Effects on Cylinder Drag at Low Reynolds Number
,”
Phys. Fluids
,
22
(
4
), pp.
603
613
.
37.
Lauga
,
E.
, and
Powers
,
T. R.
,
2009
, “
The Hydrodynamics of Swimming Microorganisms
,”
Rep. Prog. Phys.
,
72
(
9
), p.
096601
.
38.
Cox
,
R. G.
,
1970
, “
The Motion of Long Slender Bodies in a Viscous Fluid. Part 1. General Theory
,”
J. Fluid Mech.
,
44
(
04
), p.
791
.
39.
Yu
,
T. S.
,
Lauga
,
E.
, and
Hosoi
,
A. E.
,
2006
, “
Experimental Investigations of Elastic Tail Propulsion at Low Reynolds Number
,”
Phys. Fluids
,
18
(
9
), pp.
18
22
.
40.
Leith
,
D.
,
1987
, “
Drag on Nonspherical Objects
,”
Aerosol Sci. Technol.
,
6
(
2
), pp.
153
161
.
41.
Dreyfus
,
R.
,
Baudry
,
J.
,
Roper
,
M. L.
,
Fermigier
,
M.
,
Stone
,
H. A.
, and
Bibette
,
J.
,
2005
, “
Microscopic Artificial Swimmers
,”
Nature
,
437
(
7060
), pp.
862
865
.
42.
Lowe
,
C. P.
,
2003
, “
Dynamics of Filaments: Modelling the Dynamics of Driven Microfilaments
,”
Philos. Trans. R. Soc. B: Biol. Sci.
,
358
(
1437
), pp.
1543
1550
.
43.
Lagomarsino
,
M. C.
,
Capuani
,
F.
, and
Lowe
,
C. P.
,
2003
, “
A Simulation Study of the Dynamics of a Driven Filament in an Aristotelian Fluid
,”
J. Theor. Biol.
,
224
(
2
), pp.
215
224
.
44.
Abbott
,
J. J.
,
Peyer
,
K. E.
,
Lagomarsino
,
M. C.
,
Zhang
,
L.
,
Dong
,
L.
,
Kaliakatsos
,
I. K.
, and
Nelson
,
B. J.
,
2009
, “
How Should Microrobots Swim?
,”
Int. J. Rob. Res.
,
28
(
11–12
), pp.
1434
1447
.
45.
Ebashi
,
S.
,
Endo
,
M.
, and
Ohtsuki
,
I.
,
1969
, “
Control of Muscle Contraction
,”
Q. Rev. Biophys.
,
2
(
4
), pp.
351
384
.
46.
Huxley
,
A. F.
, and
Simmons
,
R. M.
,
1971
, “
Proposed Mechanism of Force Generation in Striated Muscle
,”
Nature
,
233
(
5321
), pp.
533
538
.
47.
Geeves
,
M. A.
, and
Holmes
,
K. C.
,
1999
, “
Structural Mechanism of Muscle Contraction
,”
Annu. Rev. Biochem.
,
68
(
1
), pp.
687
728
.
48.
Geeves
,
M. A.
, and
Holmes
,
K. C.
,
2005
, “
The Molecular Mechanism of Muscle Contraction
,”
Adv. Protein Chem.
,
71
, pp.
161
193
.
49.
Hill
,
A. V.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. Lond. Ser., B: Biol. Sci.
,
126
(
843
), pp.
136
195
.
50.
Caillet
,
A. H.
,
Phillips
,
A. T. M.
,
Carty
,
C.
,
Farina
,
D.
, and
Modenese
,
L.
“Hill-Type Computational Models of Muscle-Tendon Actuators: A Systematic Review,” bioRxiv, 2022.
51.
Aydin
,
O.
,
Passaro
,
A. P.
,
Elhebeary
,
M.
,
Pagan-Diaz
,
G. J.
,
Fan
,
A.
,
Nuethong
,
S.
,
Bashir
,
R.
,
Stice
,
S. L.
, and
Saif
,
M. T. A.
,
2020
, “
Development of 3D Neuromuscular Bioactuators
,”
APL Bioeng.
,
4
(
1
), p.
016107
.
52.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.
53.
Johnston
,
I. D.
,
McCluskey
,
D. K.
,
Tan
,
C. K. L.
, and
Tracey
,
M. C.
,
2014
, “
Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering
,”
J. Micromech. Microeng.
,
24
(
3
), p.
035017
.
54.
Howell
,
L. L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
.
55.
Nomura
,
T.
,
Takeuchi
,
M.
,
Kim
,
E.
,
Huang
,
Q.
,
Hasegawa
,
Y.
, and
Fukuda
,
T.
,
2021
, “
Development of Cultured Muscles With Tendon Structures for Modular Bio-Actuators
,”
Micromachines
,
12
(
4
), p.
379
.
56.
Morimoto
,
Y.
,
Onoe
,
H.
, and
Takeuchi
,
S.
,
2018
, “
Biohybrid Robot Powered by an Antagonistic Pair of Skeletal Muscle Tissues
,”
Sci. Rob.
,
3
(
18
), p.
eaat4440
.
57.
Elhebeary
,
M.
,
Emon
,
M. A. B.
,
Aydin
,
O.
, and
Saif
,
M. T. A.
,
2019
, “
A Novel Technique for In Situ Uniaxial Tests of Self-Assembled Soft Biomaterials
,”
Lab. Chip
,
19
(
7
), pp.
1153
1161
.
58.
Emon
,
B.
,
Li
,
Z.
,
Joy
,
M. S. H.
,
Doha
,
U.
,
Kosari
,
F.
, and
Saif
,
M. T. A.
,
2021
, “
A Novel Method for Sensor-Based Quantification of Single/Multicellular Force Dynamics and Stiffening in 3D Matrices
,”
Sci. Adv.
,
7
(
15
), p.
eabf2629
.
You do not currently have access to this content.