Abstract

Possessing enhanced mechanical durability and multiple novel functions, hydrogel laminates have found wide applications in diverse areas, including stretchable and bio-integrated electronics, soft robotics, tissue engineering, and biomedical devices. In the aforementioned scenarios, hydrogels are often required to sustain large deformation without mechanical failure over a long time. Compared to the fast movement in functions design, the failure mechanism of hydrogel laminates has been much less explored and researched, as well as laminates’ fracture toughness—a key parameter characterizing their fracture behavior. To address this largely unexplored issue, this article further studies the fracture toughness of hydrogel laminates both experimentally and theoretically. A kind of modified pure-shear test suitable for measuring the fracture toughness of hydrogel laminates is proposed, which is then applied to testing a PAAm-PAA laminate’s toughness. Through theoretical analysis and numerical modeling, the experimentally observed enhancement in the fracture toughness of PAAm-PAA laminates is explained—the fracture toughness of the laminates covers the energy required for both the crack and concomitant interfacial delamination to propagate, and the theoretical predictions agree well with the experimental results. The results from this study provide quantitative guidance for understanding the fracture behavior of hydrogel laminates.

References

1.
Wathoni
,
N.
,
Motoyama
,
K.
,
Higashi
,
T.
,
Okajima
,
M.
,
Kaneko
,
T.
, and
Arima
,
H.
,
2016
, “
Physically Crosslinked-Sacran Hydrogel Films for Wound Dressing Application
,”
Int. J. Biol. Macromol.
,
89
, pp.
465
470
.
2.
Qazi
,
T. H.
, and
Burdick
,
J. A.
,
2021
, “
Granular Hydrogels for Endogenous Tissue Repair
,”
Biomater. Biosyst.
,
1
, p.
100008
.
3.
Han
,
L.
,
Lu
,
X.
,
Wang
,
M.
,
Gan
,
D.
,
Deng
,
W.
,
Wang
,
K.
,
Fang
,
L.
, et al
,
2017
, “
A Mussel-Inspired Conductive, Self-Adhesive, and Self-Healable Tough Hydrogel as Cell Stimulators and Implantable Bioelectronics
,”
Small
,
13
(
2
), p.
1601916
.
4.
Keplinger
,
C.
,
Sun
,
J.-Y.
,
Foo
,
C. C.
,
Rothemund
,
P.
,
Whitesides
,
G. M.
, and
Suo
,
Z.
,
2013
, “
Stretchable, Transparent, Ionic Conductors
,”
Science
,
341
(
6149
), pp.
984
987
.
5.
Haghiashtiani
,
G.
,
Habtour
,
E.
,
Park
,
S.-H.
,
Gardea
,
F.
, and
McAlpine
,
M. C.
,
2018
, “
3D Printed Electrically-Driven Soft Actuators
,”
Extreme Mech. Lett.
,
21
, pp.
1
8
.
6.
Sarwar
,
M. S.
,
Dobashi
,
Y.
,
Preston
,
C.
,
Wyss
,
J. K. M.
,
Mirabbasi
,
S.
, and
Madden
,
J. D. W.
,
2017
, “
Bend, Stretch, and Touch: Locating a Finger on an Actively Deformed Transparent Sensor Array
,”
Sci. Adv.
,
3
(
3
), p.
e1602200
.
7.
Larson
,
C.
,
Peele
,
B.
,
Li
,
S.
,
Robinson
,
S.
,
Totaro
,
M.
,
Beccai
,
L.
,
Mazzolai
,
B.
, and
Shepherd
,
R.
,
2016
, “
Highly Stretchable Electroluminescent Skin for Optical Signaling and Tactile Sensing
,”
Science
,
351
(
6277
), pp.
1071
1074
.
8.
Lee
,
Y.
,
Song
,
W. J.
, and
Sun
,
J. Y.
,
2020
, “
Hydrogel Soft Robotics
,”
Mater. Today Phys.
,
15
, p.
100258
.
9.
Li
,
X.
,
Yuan
,
L.
,
Liu
,
R.
,
He
,
H.
,
Hao
,
J.
,
Lu
,
Y.
,
Wang
,
Y.
,
Liang
,
G.
,
Yuan
,
G.
, and
Guo
,
Z.
,
2021
, “
Engineering Textile Electrode and Bacterial Cellulose Nanofiber Reinforced Hydrogel Electrolyte to Enable High-Performance Flexible All-Solid-State Supercapacitors
,”
Adv. Energy Mater.
,
11
(
12
), p.
2003010
.
10.
Wu
,
K. S.
,
Stefik
,
M. M.
,
Ananthapadmanabhan
,
K. P.
, and
Dauskardt
,
R. H.
,
2006
, “
Graded Delamination Behavior of Human Stratum Corneum
,”
Biomaterials
,
27
(
34
), pp.
5861
5870
.
11.
Qin
,
M.
,
Sun
,
M.
,
Bai
,
R.
,
Mao
,
Y.
,
Qian
,
X.
,
Sikka
,
D.
,
Zhao
,
Y.
,
Qi
,
H. J.
,
Suo
,
Z.
, and
He
,
X.
,
2018
, “
Bioinspired Hydrogel Interferometer for Adaptive Coloration and Chemical Sensing
,”
Adv. Mater.
,
30
(
21
), p.
1800468
.
12.
Han
,
Z.
,
Wang
,
P.
,
Mao
,
G.
,
Yin
,
T.
,
Zhong
,
D.
,
Yiming
,
B.
,
Hu
,
X.
, et al
,
2020
, “
Dual pH-Responsive Hydrogel Actuator for Lipophilic Drug Delivery
,”
ACS Appl. Mater. Interfaces
,
12
(
10
), pp.
12010
12017
.
13.
Pan
,
L.
,
Yu
,
G.
,
Zhai
,
D.
,
Lee
,
H. R.
,
Zhao
,
W.
,
Liu
,
N.
,
Wang
,
H.
, et al
,
2012
, “
Hierarchical Nanostructured Conducting Polymer Hydrogel With High Electrochemical Activity
,”
Proc. Natl. Acad. Sci. USA
,
109
(
24
), pp.
9287
9292
.
14.
Yu
,
C.
,
Duan
,
Z.
,
Yuan
,
P.
,
Li
,
Y.
,
Su
,
Y.
,
Zhang
,
X.
,
Pan
,
Y.
, et al
,
2013
, “
Electronically Programmable, Reversible Shape Change in Two- and Three-Dimensional Hydrogel Structures
,”
Adv. Mater.
,
25
(
11
), pp.
1541
1546
.
15.
Lin
,
S.
,
Yuk
,
H.
,
Zhang
,
T.
,
Parada
,
G. A.
,
Koo
,
H.
,
Yu
,
C.
, and
Zhao
,
X.
,
2016
, “
Stretchable Hydrogel Electronics and Devices
,”
Adv. Mater.
,
28
(
22
), pp.
4497
4505
.
16.
Sun
,
J.-Y.
,
Keplinger
,
C.
,
Whitesides
,
G. M.
, and
Suo
,
Z.
,
2014
, “
Ionic Skin
,”
Adv. Mater.
,
26
(
45
), pp.
7608
7614
.
17.
Yang
,
C. H.
,
Chen
,
B.
,
Lu
,
J. J.
,
Yang
,
J. H.
,
Zhou
,
J.
,
Chen
,
Y. M.
, and
Suo
,
Z.
,
2015
, “
Ionic Cable
,”
Extreme Mech Lett.
,
3
, pp.
59
65
.
18.
Jia
,
Z.
,
Tucker
,
M. B.
, and
Li
,
T.
,
2011
, “
Failure Mechanics of Organic–Inorganic Multilayer Permeation Barriers in Flexible Electronics
,”
Compos. Sci. Technol.
,
71
(
3
), pp.
365
372
.
19.
Li
,
T.
,
Huang
,
Z. Y.
,
Xi
,
Z. C.
,
Lacour
,
S. P.
,
Wagner
,
S.
, and
Suo
,
Z.
,
2005
, “
Delocalizing Strain in a Thin Metal Film on a Polymer Substrate
,”
Mech. Mater.
,
37
(
2
), pp.
261
273
.
20.
Cordero
,
N.
,
Yoon
,
J.
, and
Suo
,
Z.
,
2007
, “
Channel Cracks in a Hermetic Coating Consisting of Organic and Inorganic Layers
,”
Appl. Phys. Lett.
,
90
(
11
), p.
111910
.
21.
Lu
,
N.
,
Suo
,
Z.
, and
Vlassak
,
J. J.
,
2010
, “
The Effect of Film Thickness on the Failure Strain of Polymer-Supported Metal Films
,”
Acta Mater.
,
58
(
5
), pp.
1679
1687
.
22.
Lacour
,
S. P.
,
Chan
,
D.
,
Wagner
,
S.
,
Li
,
T.
, and
Suo
,
Z.
,
2006
, “
Mechanisms of Reversible Stretchability of Thin Metal Films on Elastomeric Substrates
,”
Appl. Phys. Lett.
,
88
(
20
), p.
204103
.
23.
Shao
,
X.
,
Cai
,
Y.
,
Yin
,
S.
,
Li
,
T.
, and
Jia
,
Z.
,
2022
, “
Mechanics of Interfacial Delamination in Deep-Sea Soft Robots Under Hydrostatic Pressure
,”
ASME J. Appl. Mech.
,
90
(
2
), p.
021009
.
24.
Cai
,
Y.
,
Ma
,
J.
,
Shen
,
Z.
,
Shao
,
X.
,
Jia
,
Z.
, and
Qu
,
S.
,
2023
, “
Enhancing the Fracture Resistance of Hydrogels by Regulating the Energy Release Rate via Bilayer Designs: Theory and Experiments
,”
J. Mech. Phys. Solids
,
170
, p.
105125
.
25.
Rivlin
,
R. S.
, and
Thomas
,
A. G.
,
1953
, “
Rupture of Rubber. I. Characteristic Energy for Tearing
,”
J. Polym Sci.
,
10
(
3
), pp.
291
318
.
26.
Lake
,
G. J.
, and
Thomas
,
A. G.
,
1967
, “
The Strength of Highly Elastic Materials
,”
Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci.
,
300
(
1460
), pp.
108
119
.
27.
Baumberger
,
T.
,
Caroli
,
C.
, and
Martina
,
D.
,
2006
, “
Solvent Control of Crack Dynamics in a Reversible Hydrogel
,”
Nat. Mater.
,
5
(
7
), pp.
552
555
.
28.
Baumberger
,
T.
,
Caroli
,
C.
, and
Martina
,
D.
,
2006
, “
Fracture of a Biopolymer gel as a Viscoplastic Disentanglement Process
,”
Eur. Phys J. E Soft Matter
,
21
(
1
), pp.
81
89
.
29.
Li
,
T.
, and
Suo
,
Z.
,
2007
, “
Ductility of Thin Metal Films on Polymer Substrates Modulated by Interfacial Adhesion
,”
Int. J. Solids Struct.
,
44
(
6
), pp.
1696
1705
.
30.
Lu
,
N.
,
Wang
,
X.
,
Suo
,
Z.
, and
Vlassak
,
J.
,
2007
, “
Metal Films on Polymer Substrates Stretched Beyond 50%
,”
Appl. Phys. Lett.
,
91
(
22
), p.
221909
.
31.
Lu
,
N.
,
Wang
,
X.
,
Suo
,
Z.
, and
Vlassak
,
J.
,
2009
, “
Failure by Simultaneous Grain Growth, Strain Localization, and Interface Debonding in Metal Films on Polymer Substrates
,”
J. Mater. Res.
,
24
(
2
), pp.
379
385
.
32.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1991
, “Mixed Mode Cracking in Layered Materials,”
Advances in Applied Mechanics
,
J.W.
Hutchinson
, and
T.Y.
Wu
, eds.,
Elsevier
,
New York
, pp.
63
191
.
You do not currently have access to this content.