Abstract

Stochastic averaging, as an effective technique for dimension reduction, is of great significance in stochastic dynamics and control. However, its practical applications in industrial and engineering fields are severely hindered by its dependence on governing equations and the complexity of mathematical operations. Herein, a data-driven method, named data-driven stochastic averaging, is developed to automatically discover the low-dimensional stochastic differential equations using only the random state data captured from the original high-dimensional dynamical systems. This method includes two successive steps, that is, extracting all slowly varying processes hidden in fast-varying state data and identifying drift and diffusion coefficients by their mathematical definitions. It automates dimension reduction and is especially suitable for cases with unavailable governing equations and excitation data. Its application, efficacy, and comparison with theory-based stochastic averaging are illustrated through several examples, numerical or experimental, with pure Gaussian white noise excitation or combined excitations.

References

1.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1960
,
Mechanics
,
Pergamon Press
,
New York
.
2.
Goldstein
,
H.
,
Poole
,
C. P.
, and
Safko
,
J. L.
,
2002
,
Classical Mechanics
,
Addison Wesley
,
San Francisco, CA
.
3.
Gere
,
J. M.
, and
Timoshenko
,
S. P.
,
1991
,
Mechanics of Materials
,
Chapman and Hall
,
London
.
4.
Heyman
,
J.
,
1974
,
Beams and Framed Structure
,
Pergamon Press
,
Oxford
.
5.
Poincare
,
H.
,
1908
,
Science and Method
,
Cosimo Classics
,
New York
.
6.
Mach
,
E.
,
1919
,
The Science of Mechanics: A Critical and Historical Account of Its Development
,
The Open Court Publishing Company
,
London
.
7.
Confucius
,
1971
,
Confucian Analects; The Great Learning, and the Doctrine of the Mean
,
Dover Publications
,
New York
.
8.
Stratonovich
,
R. L.
,
1963
,
Topics in the Theory of Random Noise
,
Gordon and Breach
,
New York
.
9.
Khasminskii
,
R. Z.
,
1966
, “
A Limit Theorem for the Solutions of Differential Equations With Random Right-Hand Sides
,”
Theory Probab. Appl.
,
11
(
3
), pp.
390
406
.
10.
Lin
,
Y. K.
,
1995
,
Probabilistic Structural Dynamics: Advanced Theory and Applications
,
McGraw-Hill
,
New York.
11.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
1986
, “
Stochastic Averaging: An Approximate Method of Solving Random Vibration Problems
,”
Int. J. Non Linear Mech.
,
21
(
2
), pp.
111
134
.
12.
Zhu
,
W. Q.
, and
Lin
,
Y. K.
,
1991
, “
Stochastic Averaging of Energy Envelope
,”
J. Eng. Mech.
,
117
(
8
), pp.
1890
1905
.
13.
Huang
,
Z. L.
,
Zhu
,
W. Q.
, and
Suzuki
,
Y.
,
2000
, “
Stochastic Averaging of Strongly Non-linear Oscillators Under Combined Harmonic and White-Noise Excitations
,”
J. Sound Vib.
,
238
(
2
), pp.
233
256
.
14.
Zhu
,
W. Q.
,
2006
, “
Nonlinear Stochastic Dynamics and Control in Hamiltonian Formulation
,”
ASME Appl. Mech. Rev.
,
59
(
1–6
), pp.
230
248
.
15.
Zeng
,
Y.
, and
Zhu
,
W. Q.
,
2011
, “
Stochastic Averaging of Quasi-Nonintegrable-Hamiltonian Systems Under Poisson White Noise Excitation
,”
ASME J. Appl. Mech.
,
78
(
2
), p.
021002
.
16.
Xu
,
Y.
,
Duan
,
J.
, and
Xu
,
W.
,
2011
, “
An Averaging Principle for Stochastic Dynamical Systems With Lévy Noise
,”
Phys. D: Nonlinear Phenom.
,
240
(
17
), pp.
1395
1401
.
17.
Zhu
,
W. Q.
,
Deng
,
M. L.
, and
Cai
,
G. Q.
,
2023
,
Stochastic Averaging and Its Applications
,
Science Press
,
Beijing
(to be published, in Chinese).
18.
Pearson
,
K.
,
1901
, “
On Lines and Planes of Closest Fit to Systems of Points in Space
,”
Lond. Edinb. Dublin Philos. Mag. J. Sci.
,
2
(
11
), pp.
559
572
.
19.
Schölkopf
,
B.
,
Smola
,
A.
, and
Müller
,
K.-R.
,
1998
, “
Nonlinear Component Analysis as a Kernel Eigenvalue Problem
,”
Neural Comput.
,
10
(
5
), pp.
1299
1319
.
20.
Van Der Maaten
,
L.
, and
Hinton
,
G.
,
2008
, “
Visualizing Data Using t-SNE
,”
J. Mach. Learn. Res.
,
9
, pp.
2579
2605
.
21.
Tu
,
J. H.
,
Rowley
,
C. W.
,
Luchtenburg
,
D. M.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2014
, “
On Dynamic Mode Decomposition: Theory and Applications
,”
J. Comput. Dyn.
,
1
(
2
), pp.
391
421
.
22.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.
23.
Mezić
,
I.
,
2013
, “
Analysis of Fluid Flows Via Spectral Properties of the Koopman Operator
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
357
378
.
24.
Williams
,
M. O.
,
Kevrekidis
,
I. G.
, and
Rowley
,
C. W.
,
2015
, “
A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
,”
J. Nonlinear Sci.
,
25
(
6
), pp.
1307
1346
.
25.
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2019
,
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
,
Cambridge University Press
,
Cambridge
.
26.
Friedrich
,
R.
,
Peinke
,
J.
, and
Renner
,
C.
,
2000
, “
How to Quantify Deterministic and Random Influences on the Statistics of the Foreign Exchange Market
,”
Phys. Rev. Lett.
,
84
(
22
), pp.
5224
5227
.
27.
Friedrich
,
R.
,
Siegert
,
S.
,
Peinke
,
J.
,
Lück
,
S.
,
Siefert
,
M.
,
Lindemann
,
M.
,
Raethjen
,
J.
,
Deuschl
,
G.
, and
Pfister
,
G.
,
2000
, “
Extracting Model Equations From Experimental Data
,”
Phys. Lett. A
,
271
(
3
), pp.
217
222
.
28.
Gradišek
,
J.
,
Friedrich
,
R.
,
Govekar
,
E.
, and
Grabec
,
I.
,
2003
, “
Examples of Analysis of Stochastic Processes Based on Time Series Data
,”
Meccanica
,
38
(
1
), pp.
33
42
.
29.
Horenko
,
I.
,
Hartmann
,
C.
,
Schutte
,
C.
, and
Noe
,
F.
,
2007
, “
Data-Based Parameter Estimation of Generalized Multidimensional Langevin Processes
,”
Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.
,
76
(
1
), p.
016706
.
30.
Boninsegna
,
L.
,
Nüske
,
F.
, and
Clementi
,
C.
,
2018
, “
Sparse Learning of Stochastic Dynamical Equations
,”
J. Chem. Phys.
,
148
(
24
), p.
241723
.
31.
Garcia
,
C. A.
,
Otero
,
A.
,
Felix
,
P.
,
Presedo
,
J.
, and
Marquez
,
D. G.
,
2017
, “
Nonparametric Estimation of Stochastic Differential Equations With Sparse Gaussian Processes
,”
Phys. Rev. E
,
96
(
2
), p.
022104
.
32.
Klus
,
S.
,
Nuske
,
F.
,
Peitz
,
S.
,
Niemann
,
J. H.
,
Clementi
,
C.
, and
Schutte
,
C.
,
2020
, “
Data-Driven Approximation of the Koopman Generator: Model Reduction, System Identification, and Control
,”
Phys. D: Nonlinear Phenom.
,
406
, p.
132416
.
33.
Lu
,
Y.
, and
Duan
,
J.
,
2020
, “
Discovering Transition Phenomena From Data of Stochastic Dynamical Systems With Lévy Noise
,”
Chaos Interdisciplin. J. Nonlinear Sci.
,
30
(
9
), p.
093110
.
34.
Li
,
Y.
, and
Duan
,
J.
,
2021
, “
A Data-Driven Approach for Discovering Stochastic Dynamical Systems With Non-Gaussian Lévy Noise
,”
Phys. D: Nonlinear Phenom.
,
417
, p.
132830
.
35.
Li
,
J. Y.
,
Wang
,
Y.
,
Jin
,
X. L.
,
Huang
,
Z. L.
, and
Elishakoff
,
I.
,
2021
, “
Data-Driven Method for Dimension Reduction of Nonlinear Randomly Vibrating Systems
,”
Nonlinear Dyn.
,
105
(
2
), pp.
1297
1311
.
36.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci. U.S.A.
,
113
(
15
), pp.
3932
3937
.
37.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
Cambridge
.
38.
Kramers
,
H. A.
,
1940
, “
Brownian Motion in a Field of Force and the Diffusion Model of Chemical Reactions
,”
Physica
,
7
(
4
), pp.
284
304
.
39.
Lade
,
S. J.
,
2009
, “
Finite Sampling Interval Effects in Kramers-Moyal Analysis
,”
Phys. Lett. A
,
373
(
41
), pp.
3705
3709
.
40.
Strutz
,
T.
,
2015
,
Data Fitting and Uncertainty: A Practical Introduction to Weighted Least Squares and Beyond
,
Springer
,
Wiesbaden
.
41.
Cressie
,
N.
,
1985
, “
Fitting Variogram Models by Weighted Least Squares
,”
J. Int. Assoc. Math. Geol.
,
17
(
5
), pp.
563
586
.
42.
Zhu
,
W. Q.
, and
Yang
,
Y. Q.
,
1997
, “
Stochastic Averaging of Quasi-Nonintegrable-Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
64
(
1
), pp.
157
164
.
43.
Gan
,
C. B.
, and
Zhu
,
W. Q.
,
2001
, “
First-Passage Failure of Quasi-Non-Integrable-Hamiltonian Systems
,”
Int. J. Non Linear Mech.
,
36
(
2
), pp.
209
220
.
You do not currently have access to this content.