Abstract

The quest for safe lower bounds to the elastic buckling of axially loaded circular cylindrical shells has exercised researchers for the past 100 years. Recent work bringing together the capabilities of nonlinear numerical simulation, interpreted within the context of extended linear classical theory, has come close to achieving this goal of defining safe lower bounds. This paper briefly summarizes some of the important predictions emerging from previous work and presents new simulation results that confirm these earlier predictions. In particular, we show that for a specified maximum amplitude of the most sensitive, eigenmode-based geometric imperfections, normalized with respect to the shell thickness, lower bounds to the buckling loads remain constant beyond a well-defined value of the Batdorf parameter. Furthermore, we demonstrate how this convenient means of presenting the imperfection-sensitive buckling loads can be reinterpreted to develop practical design curves which provide safe, but not overly conservative, design loads for monocoque cylinders with a given maximum permitted tolerance of geometric imperfection. Hence, once the allowable manufacturing tolerance is specified during design or is measured post-manufacturing, the greatest expected knockdown factor for a shell of any geometry is defined. With the recent research interest in localized imperfections, we also attempt to reconcile their relation to the more classical, periodic, and eigenmode-based imperfections. Overall, this paper provides analytical and computational arguments that motivate a shift in focus in defect-tolerant design of thin-walled cylinders—away from the knockdown experienced for a specific geometric imperfection and towards the worst possible knockdown expected for a specified manufacturing tolerance.

References

1.
Hilburger
,
M. W.
,
2013
, “
Developing the Next Generation Shell Buckling Design Factors and Technologies
,”
AIAA/ASME/ASCE/AHS/ASC, Structures, Structural Dynamics and Materials Conference AIAA/ASME/AHS Adaptive Structure Conference
,
Honolulu, HI
,
Apr. 23–26
.
2.
Hilburger
,
M. W.
,
2020
, “
Buckling of Thin-Walled Circular Cylinders
,”
NASA SP-8007-2020
, 2nd ed.,
NASA Langley Research Centre
,
Hampton, VA
.
3.
Croll
,
J.
,
2023
, “
Comments on the Effective Use of Numerical Modelling and Extended Classical Shell Buckling Theory
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
479
(
2269
), p.
20220622
.
4.
Croll
,
J.
,
2023
, “
Reinterpretation of Extensions to Classical Theory of Axial Load Buckling of Circular Cylinders
,”
Thin-Walled Struct.
,
184
, p.
110379
.
5.
Hilburger
,
M. W.
, and
Starnes
,
J. H.
,
2024
, “
Effects of Imperfections of the Buckling Response of Composite Shells
,”
Thin-Walled Struct.
,
42
(
3
), pp.
369
397
.
6.
Hühne
,
C.
,
Rolfes
,
R.
, and
Tessmer
,
J.
,
2005
, “
A New Approach for Robust Design of Composite Cylindrical Shells Under Axial Compression
,”
Spacecr. Struct. Mater. Mech. Test.
,
2005
, p.
ESA SP-581
.
7.
Degenhardt
,
R.
,
2015
, “
New Robust Design Guideline for Imperfection Sensitive Composite Launcher Structures—The DESICOS Project
,”
3rd International Conference on Buckling and Postbuckling Behaviour of Composite Laminated Shell Structures
,
Braunschweig, Germany
,
Mar. 25–27
.
8.
Wagner
,
H. N. R.
,
Hühne
,
C.
,
Niemann
,
S.
,
Tian
,
K.
,
Wang
,
B.
, and
Hao
,
P.
,
2018
, “
Robust Knockdown Factors for the Design of Cylindrical Shells Under Axial Compression: Analysis and Modeling of Stiffened and Unstiffened Cylinders
,”
Thin-Walled Struct.
,
127
, pp.
629
645
.
9.
Wang
,
B.
,
Ma
,
X.
,
Hao
,
P.
,
Sun
,
Y.
,
Tian
,
K.
,
Li
,
G.
,
Zhang
,
K.
,
Jiang
,
L.
, and
Guo,
J.
,
2019
, “
Improved Knockdown Factors for Composite Cylindrical Shells With Delamination and Geometric Imperfections
,”
Compos. Part B: Eng.
,
163
, pp.
314
323
.
10.
Wang
,
B.
,
Du
,
K.
,
Hao
,
P.
,
Tian
,
K.
,
Chao
,
Y. J.
,
Jiang
,
L.
,
Xu
,
S.
, and
Zhang
,
X.
,
2019
, “
Experimental Validation of Cylindrical Shells Under Axial Compression for Improved Knockdown Factors
,”
Int. J. Solids Struct.
,
164
, pp.
37
51
.
11.
Croll
,
J. G. A.
, and
Ellinas
,
C. P.
,
1983
, “
Reduced Stiffness Axial Load Buckling of Cylinders
,”
Int. J. Solids Struct.
,
19
(
5
), pp.
461
477
.
12.
Groh
,
R. M. J.
, and
Pirrera
,
A.
,
2019
, “
On the Role of Localizations in Buckling of Axially Compressed Cylinders
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
475
(
2224
), p.
20190006
.
13.
Groh
,
R. M. J.
,
Hunt
,
G. W.
, and
Pirrera
,
A.
,
2021
, “
Snaking and Laddering in Axially Compressed Cylinders
,”
Int. J. Mech. Sci.
,
196
, p.
106297
.
14.
Groh
,
R. M. J.
, and
Hunt
,
G. W.
,
2021
, “
Localization and Snaking in Axially Compressed and Internally Pressurized Thin Cylindrical Shells
,”
IMA J. Appl. Math.
,
86
(
5
), pp.
1010
1030
.
15.
Kreilos
,
T.
, and
Schneider
,
T. M.
,
2017
, “
Fully Localized Post-Buckling States of Cylindrical Shells Under Axial Compression
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
473
(
2205
), p.
20170177
.
16.
Thompson
,
J. M. T.
, and
Sieber
,
J.
,
2015
, “
Shock-Sensitivity in Shell-Like Structures: With Simulations of Spherical Shell Buckling
,”
Int. J. Bifurc. Chaos
,
26
(
2
), p.
1630003
.
17.
Horák
,
J.
,
Lord
,
G. J.
, and
Peletier
,
M. A.
,
2006
, “
Cylinder Buckling: The Mountain Pass as an Organizing Center
,”
SIAM J. Appl. Math.
,
66
(
5
), pp.
1793
1824
.
18.
Virot
,
E.
,
Kreilos
,
T.
,
Schneider
,
T. M.
, and
Rubinstein
,
S. M.
,
2017
, “
Rubinstein S M. Stability Landscape of Shell Buckling
,”
Phys. Rev. Lett.
,
119
(
22
), p.
224101
.
19.
Abramian
,
A.
,
Virot
,
E.
,
Lozano
,
E.
,
Rubinstein
,
S. M.
, and
Schneider
,
T. M.
,
2020
, “
Nondestructive Prediction of the Buckling Load of Imperfect Shells
,”
Phys. Rev. Lett.
,
125
(
22
), p.
225504
.
20.
Gerasimidis
,
S.
,
Virot
,
E.
,
Hutchinson
,
J. W.
, and
Rubinstein
,
S. M.
,
2018
, “
On Establishing Buckling Knockdowns for Imperfection-Sensitive Shell Structures
,”
ASME J. Appl. Mech.
,
85
(
9
), p.
091010
.
21.
Wullschleger
,
L.
,
2006
, “
Numerical Investigation of the Buckling Behaviour of Axially Compressed Circular Cylinders Having Parametric Initial Dimple Imperfections
,”
Ph.D. thesis
,
ETH Zürich
,
Zurich
.
22.
Hühne
,
C.
,
Rolfes
,
R.
,
Breitbach
,
E.
, and
Teßmer
,
J.
,
2008
, “
Robust Design of Composite Cylindrical Shells Under Axial Compression—Simulation and Validation
,”
Thin-Walled Struct.
,
46
(
7–9
), pp.
947
962
.
23.
Wagner
,
H. N. R.
, and
Hühne
,
C.
,
2018
, “
Robust Knockdown Factors for the Design of Cylindrical Shells Under Axial Compression: Potentials, Practical Application and Reliability Analysis
,”
Int. J. Mech. Sci.
,
135
, pp.
410
430
.
24.
Evkin
,
A.
,
Krasovsky
,
V.
,
Lykhachova
,
O.
, and
Marchenko
,
V.
,
2019
, “
Local Buckling of Axially Compressed Cylindrical Shells With Different Boundary Conditions
,”
Thin-Walled Struct.
,
141
, pp.
374
388
.
25.
Evkin
,
A.
,
2021
, “
Analytical Model of Local Buckling of Axially Compressed Cylindrical Shells
,”
Thin-Walled Struct.
,
168
, p.
108261
.
26.
Gerasimidis
,
S.
,
Hutchinson
,
J. W.
,
Sieber
,
J.
, and
Thompson
,
J. M. T.
,
2023
, “
Foreword to the Special Issue on New Developments in Structural Stability
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
,
381
(
2244
), p.
20220038
.
27.
Cuccia
,
N. L.
,
Yadav
,
K. K.
,
Serlin
,
M.
,
Virot
,
E.
,
Gerasimidis
,
S.
, and
Rubinstein
,
S. M.
,
2023
, “
Hitting the Mark: Probing at the Initiation Site Allows for Accurate Prediction of a Thin Shell’s Buckling Load
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
,
381
(
2244
), p.
20220036
.
28.
Groh
,
R. M. J.
, and
Pirrera
,
A.
,
2023
, “
Probing the Stability Landscape of Cylindrical Shells for Buckling Knockdown Factors
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
,
381
(
2244
), p.
20220032
.
29.
Wang
,
H.
,
2009
, “
Buckling Design for Fibre Reinforced Laminated Cylindrical Shells
,”
Ph.D. thesis
,
University College London
,
London
.
30.
Wang
,
H.
, and
Croll
,
J. G. A.
,
2015
, “
Plateau Lower Bounds to the Imperfection Sensitive Buckling of Composite Shells
,”
Compos. Struct.
,
133
, pp.
979
985
.
31.
Wang
,
H.
, and
Croll
,
J. G. A.
,
2013
, “
Lower-Bound Analysis of Fibre Reinforced Polymeric Laminated Cylindrical Shells
,”
AIAA J.
,
51
(
1
), pp.
218
225
.
32.
Yamada
,
S.
, and
Croll
,
J. G. A.
,
1999
, “
Contributions to the Understanding of the Behaviour of Axially Compressed Cylinders
,”
ASME J. Appl. Mech.
,
66
(
2
), pp.
299
309
.
33.
Groh
,
R. M. J.
,
Avitabile
,
D.
, and
Pirrera
,
A.
,
2018
, “
Generalised Path-Following for Well-Behaved Nonlinear Structures
,”
Comput. Methods Appl. Mech. Eng.
,
331
, pp.
394
426
.
34.
Dvorkin
,
E.
, and
Bathe
,
K.-J.
,
1984
, “
A Continuum Mechanics Based Four-Node Element for General Non-linear Analysis
,”
Eng. Comput.
,
1
(
1
), pp.
77
88
.
35.
Wadee
,
A.
,
2000
, “
Effects of Periodic and Localized Imperfections on Struts on Nonlinear Foundations and Compression Sandwich Panels
,”
Int. J. Sol. Struct.
,
37
, pp.
1191
1209
.
36.
Hutchinson
,
J. W.
,
Tennyson
,
R. C.
, and
Muggeridge
,
D. B.
,
1971
, “
Effect of Local Axisymmetric Imperfections on the Buckling Behavior of a Circular Cylindrical Shell Under Axial Compression
,”
AIAA J.
,
9
(
1
), pp.
48
52
.
You do not currently have access to this content.