Abstract

The impact of uncertainty on the flexural response of sandwich beams is studied in this paper. The study focuses on the unique features of typical soft-core sandwich beams, including local effects and stresses concentrations. Those are critical for the integrity and performance of the structural system and, to the best knowledge of the authors, were never considered from a stochastic viewpoint. Several structural features of the beam are considered, separately, as uncertain, and the stochastic characteristics of the distributions of the displacements and stresses are investigated. To capture the unique local effects, the extended high-order sandwich panel theory is adopted. Numerical solutions of the stochastic ordinary differential equations use the finite element (FE) method. The parametric uncertainty and its spatial distribution are modeled by random fields. The stochastic analysis uses both the Karhunen–Loeve polynomial-chaos and the perturbation-based stochastic finite element methods. The two approaches are compared and comprehensively validated against Monte Carlo simulations. The numerical results quantify the impact of uncertainty on the response, but show significant disagreements between the two stochastic approaches, and the perturbation-based stochastic finite element method is chosen as the most suitable one. The effects of the coefficient of variation of the uncertain input parameter and its correlation length are also studied. Highly amplified levels of uncertainty are revealed by the stochastic analysis near points of local stress concentration. These localized yet significant uncertainties, reported here for the first time, shed new light on the design, analysis, and safety of such sandwich beams.

References

1.
Carrera
,
E.
, and
Brischetto
,
S.
,
2009
, “
A Survey With Numerical Assessment of Classical and Refined Theories for the Analysis of Sandwich Plates
,”
ASME Appl. Mech. Rev.
,
62
(
1
), pp.
1
17
.
2.
Carlsson
,
L. A.
, and
Kardomateas
,
G. A.
,
2011
,
Structural and Failure Mechanics of Sandwich Composites
,
Springer
,
Dordrecht, NY
.
3.
Frostig
,
Y.
,
Baruch
,
M.
,
Vilnay
,
O.
, and
Sheinman
,
I.
,
1992
, “
High-Order Theory for Sandwich-Beam Behavior With Transversely Flexible Core
,”
J. Eng. Mech.
,
118
(
5
), pp.
1026
1043
.
4.
Frostig
,
Y.
, and
Baruch
,
M.
,
1990
, “
Bending of Sandwich Beams With Transversely Flexible Core
,”
AIAA J.
,
28
(
3
), pp.
523
531
.
5.
Frostig
,
Y.
,
2011
, “
On Wrinkling of a Sandwich Panel With a Compliant Core and Self-Equilibrated Loads
,”
J. Sandwich Struct. Mater.
,
13
(
6
), pp.
663
679
.
6.
Phan
,
C. N.
,
Frostig
,
Y.
, and
Kardomateas
,
G. A.
,
2012
, “
Analysis of Sandwich Beams With a Compliant Core and With In-Plane Rigidity—Extended High-Order Sandwich Panel Theory Versus Elasticity
,”
ASME. J. Appl. Mech.
,
79
(
4
), p.
041001
.
7.
Rabinovitch
,
O.
,
2014
, “
An Extended High Order Cohesive Interface Approach to the Debonding Analysis of FRP Strengthened Beams
,”
Int. J. Mech. Sci.
,
81
, pp.
1
16
.
8.
Rabinovitch
,
O.
,
2014
, “
Dynamic Edge Debonding in FRP Strengthened Beams
,”
Eur. J. Mech. A/Solids
,
47
, pp.
309
326
.
9.
Odessa
,
I.
,
Frostig
,
Y.
, and
Rabinovitch
,
O.
,
2018
, “
Modeling of Interfacial Debonding Propagation in Sandwich Panels
,”
Int. J. Solids Struct.
,
148–149
, pp.
67
78
.
10.
Odessa
,
I.
,
Frostig
,
Y.
, and
Rabinovitch
,
O.
,
2020
, “
Dynamic Interfacial Debonding in Sandwich Panels
,”
Compos. Part B: Eng.
,
185
, p.
107733
.
11.
Kumar
,
R. R.
,
Mukhopadhyay
,
T.
,
Naskar
,
S.
,
Pandey
,
K. M.
, and
Dey
,
S.
,
2019
, “
Stochastic Low-Velocity Impact Analysis of Sandwich Plates Including the Effects of Obliqueness and Twist
,”
Thin-Walled Struct.
,
145
, p.
106411
.
12.
Kumar
,
R. R.
,
Mukhopadhyay
,
T.
,
Pandey
,
K. M.
, and
Dey
,
S.
,
2019
, “
Stochastic Buckling Analysis of Sandwich Plates: The Importance of Higher Order Modes
,”
Int. J. Mech. Sci.
,
152
, pp.
630
643
.
13.
Sharma
,
H.
,
Mukherjee
,
S.
, and
Ganguli
,
R.
,
2022
, “
Stochastic Strain and Stress Computation of a Higher-Order Sandwich Beam Using Hybrid Stochastic Time Domain Spectral Element Method
,”
Mech. Adv. Mater. Struct.
,
29
(
4
), pp.
525
538
.
14.
Mukherjee
,
S.
,
Sekhar
,
B. R.
,
Gopalakrishnan
,
S.
, and
Ganguli
,
R.
,
2020
, “
Static and Dynamic Analysis of Sandwich Panel With Spatially Varying Non-Gaussian Properties
,”
J. Sandwich Struct. Mater.
,
22
(
8
), pp.
2469
2504
.
15.
Pandit
,
M. K.
,
Singh
,
B. N.
, and
Sheikh
,
A. H.
,
2010
, “
Stochastic Free Vibration Response of Soft Core Sandwich Plates Using an Improved Higher-Order Zigzag Theory
,”
J. Aerospace Eng.
,
23
(
1
), pp.
14
23
.
16.
Sahoo
,
R.
,
Grover
,
N.
, and
Singh
,
B. N.
,
2019
, “
Nonpolynomial Zigzag Theories for Random Static Analysis of Laminated-Composite and Sandwich Plates
,”
AIAA J.
,
57
(
1
), pp.
437
447
.
17.
Wang
,
T.
,
Xu
,
C.
,
Hamdaoui
,
M.
,
Guo
,
N.
, and
Gu
,
L.
,
2021
, “
Uncertainty Propagation in Modal Analysis of Viscoelastic Sandwich Structures Using a Stochastic Collocation Method
,”
J. Sandwich Struct. Mater.
,
23
(
4
), pp.
1141
1165
.
18.
Druesne
,
F.
,
Hamdaoui
,
M.
,
Yin
,
Q.
, and
Daya
,
E. M.
,
2017
, “
Variability Analysis of Modal Characteristics of Frequency-Dependent Visco-Elastic Three-Layered Sandwich Beams With Spatial Random Geometrical and Material Properties
,” ASME
J. Vib. Acoust.
,
139
(
6
), p.
061007
.
19.
Hernandez
,
W. P.
,
Castello
,
D. A.
, and
Ritto
,
T. G.
,
2016
, “
Uncertainty Propagation Analysis in Laminated Structures With Viscoelastic Core
,”
Comput. Struct.
,
164
, pp.
23
37
.
20.
Malkiel
,
N.
, and
Rabinovitch
,
O.
,
2021
, “
Stochastic Cohesive Interface Analysis of Layer Debonding
,”
Int. J. Solids Struct.
,
226–227
, p.
111081
.
21.
Malkiel
,
N.
, and
Rabinovitch
,
O.
,
2022
, “
Uncertainty in Debonding of Layered Structures With Adhesive Layers
,”
Eur. J. Mech. A/Solids
,
93
, p.
104507
.
22.
Malkiel
,
N.
, and
Rabinovitch
,
O.
,
2022
, “
Stochastic Delamination Processes—A Comparative Analysis
,”
Int. J. Solids Struct.
,
267
, p.
112159
.
23.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
NY
.
24.
Ngah
,
M. F.
, and
Young
,
A.
,
2007
, “
Application of the Spectral Stochastic Finite Element Method for Performance Prediction of Composite Structures
,”
Compos. Struct.
,
78
(
3
), pp.
447
456
.
25.
Huang
,
S. P.
,
Quek
,
S. T.
, and
Phoon
,
K. K.
,
2001
, “
Convergence Study of the Truncated Karhunen-Loeve Expansion for Simulation of Stochastic Processes
,”
Int. J. Numer. Meth. Eng.
,
52
(
9
), pp.
1029
1043
.
You do not currently have access to this content.