Abstract

Elastic coupling is extensively used for passive control of modern structures. This design philosophy has been extensively explored in composite beams, which are inherently inhomogeneous and anisotropic. Such in-depth investigation is not available for homogeneous-anisotropic beams. This paper investigates elastic coupling in homogeneous-anisotropic beam with elliptical cross section using variational asymptotic method (VAM). It is observed that the mere introduction of anisotropy does not couple the system completely. The coupling is tuneable and tailorable, depending on the material properties, their spatial distribution (homogeneity/inhomogeneity), and the geometrical parameters of the beam.

References

1.
Bagherpour
,
T.
,
Li
,
X.
,
Manolas
,
D.
, and
Riziotis
,
V.
,
2018
, “
Modeling of Material Bend-Twist Coupling on Wind Turbine Blades
,”
Compos. Struct.
,
193
, pp.
237
246
.
2.
de Goeij
,
W.
,
van Tooren
,
M.
, and
Beukers
,
A.
,
1999
, “
Implementation of Bending-Torsion Coupling in the Design of a Wind-Turbine Rotor-Blade
,”
Appl. Energy
,
63
(
3
), pp.
191
207
.
3.
Hayat
,
K.
, and
Ha
,
S. K.
,
2015
, “
Load Mitigation of Wind Turbine Blade by Aeroelastic Tailoring Via Unbalanced Laminates Composites
,”
Compos. Struct.
,
128
, pp.
122
133
.
4.
Shams
,
S.
,
Sadr
,
M. H.
, and
Badiei
,
D.
,
2021
, “
Nonlinear Aeroelasticity of High-Aspect-Ratio Wings With Laminated Composite Spar
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
7
), p.
334
.
5.
Mansfield
,
E. H.
, and
Sobey
,
A. J.
,
1979
, “
The Fibre Composite Helicopter Blade: Part I: Stiffness Properties: Part Ii: Prospects for Aeroelastic Tailoring
,”
Aeronaut. Q.
,
30
(
2
), pp.
413
449
.
6.
Hong
,
C.
, and
Chopra
,
I.
,
1986
, “
Aeroelastic Stability Analysis of a Composite Bearingless Rotor Blade
,”
J. Am. Helicopter Soc.
,
31
(
4
), pp.
29
35
.
7.
Hong
,
C.
, and
Chopra
,
I.
,
1985
, “
Aeroelastic Stability Analysis of a Composite Rotor Blade
,”
J. Am. Helicopter Soc.
,
30
(
2
), pp.
57
67
.
8.
Hashin
,
Z.
,
1967
, “
Plane Anisotropic Beams
,”
ASME J. Appl. Mech.
,
34
(
2
), pp.
257
262
.
9.
Karttunen
,
A. T.
, and
von Hertzen
,
R.
,
2016
, “
On the Foundations of Anisotropic Interior Beam Theories
,”
Compos. Part B: Eng.
,
87
, pp.
299
310
.
10.
Kosmatka
,
J. B.
, and
Dong
,
S. B.
,
1991
, “
Saint-Venant Solutions for Prismatic Anisotropic Beams
,”
Int. J. Solids. Struct.
,
28
(
7
), pp.
917
938
.
11.
Ie
,
C.
, and
Kosmatka
,
J.
,
1993
, “
Saint-Venant Elasticity Solutions of a Tip-Loaded Anisotropic Cantilevered Beam With An Elliptical Section
,”
Compos. Eng.
,
3
(
12
), pp.
1149
1164
.
12.
Omri Rand
,
V. R.
,
2005
,
Analytical Methods in Anisotropic Elasticity: With Symbolic Computational Tools
, 1st ed.,
Birkhäuser
,
Boston, MA
.
13.
Berdichevskii
,
V. L.
,
1979
, “
Variational-Asymptotic Method of Constructing a Theory of Shells. PMM Vol. 43, No.4, 1979, Pp. 664–687
,”
J. Appl. Math. Mech.
,
43
(
4
), pp.
711
736
.
14.
Berdichevskii
,
V. L.
, and
Khan’ Chau
,
L.
,
1980
, “
High-Frequency Long-Wave Shell Vibration
,”
J. Appl. Math. Mech.
,
44
(
4
), pp.
520
525
.
15.
Berdichevskii
,
V.
,
1981
, “
On the Energy of an Elastic Rod
,”
J. Appl. Math. Mech.
,
45
(
4
), pp.
518
529
.
16.
Berdichevskii
,
V. L.
, and
Starosel’skii
,
L. A.
,
1983
, “
On the Theory of Curvilinear Timoshenko-Type Rods
,”
J. Appl. Math. Mech.
,
47
(
6
), pp.
809
817
.
17.
Berdichevsky
,
V.
,
Armanios
,
E.
, and
Badir
,
A.
,
1992
, “
Theory of Anisotropic Thin-Walled Closed-Cross-Section Beams
,”
Compos. Eng.
,
2
(
5–7
), pp.
411
432
.
18.
Murakami
,
H.
,
Reissner
,
E.
, and
Yamakawa
,
J.
,
1996
, “
Anisotropic Beam Theories With Shear Deformation
,”
ASME J. Appl. Mech.
,
63
(
3
), pp.
660
668
.
19.
Reissner
,
E.
,
1984
, “
On a Certain Mixed Variational Theorem and a Proposed Application
,”
Int. J. Numer. Methods Eng.
,
20
(
7
), pp.
1366
1368
.
20.
Bauchau
,
O. A.
,
1985
, “
A Beam Theory for Anisotropic Materials
,”
ASME J. Appl. Mech.
,
52
(
2
), pp.
416
422
.
21.
Parker
,
D.
,
1979
, “
An Asymptotic Analysis of Large Deflections and Rotations of Elastic Rods
,”
Int. J. Solids. Struct.
,
15
(
5
), pp.
361
377
.
22.
Danielson
,
D. A.
, and
Hodges
,
D. H.
,
1987
, “
Nonlinear Beam Kinematics by Decomposition of the Rotation Tensor
,”
ASME J. Appl. Mech.
,
54
(
2
), pp.
258
262
.
23.
Danielson
,
D. A.
, and
Hodges
,
D. H.
,
1988
, “
A Beam Theory for Large Global Rotation, Moderate Local Rotation, and Small Strain
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
179
184
.
24.
Yu
,
W.
, and
Hodges
,
D. H.
,
2004
, “
Elasticity Solutions Versus Asymptotic Sectional Analysis of Homogeneous, Isotropic, Prismatic Beams
,”
ASME J. Appl. Mech.
,
71
(
1
), pp.
15
23
.
25.
Hodges
,
D. H.
,
2006
,
Nonlinear Composite Beam Theory.
Progress in Astronautics and Aeronautics, Vol.
213
.
American Institute of Aeronautics and Astronautics
.
You do not currently have access to this content.