Abstract

When an overhand knot tied in an elastic rod is tightened, it can undergo a sudden change in shape through snap buckling. In this article, we use a combination of discrete differential geometry (DDG)-based simulations and tabletop experiments to explore the onset of buckling as a function of knot topology, rod geometry, and friction. In our setup, two open ends of an overhand knot are slowly pulled apart, which leads to snap buckling in the knot loop. We call this phenomenon “inversion” since the loop appears to move dramatically from one side of the knot to the other. This inversion occurs due to the coupling of elastic energy between the braid (the portion of the knot in self-contact) and the loop (the portion of the knot with two ends connected to the braid). A numerical framework is implemented that combines discrete elastic rods with a constraint-based method for frictional contact to explore inversion in overhand knots. The numerical simulation robustly captures inversion in the knot and is found to be in good agreement with experimental results. In order to gain physical insight into the inversion process, we also develop a simplified model of the knot that does not require simulation of self-contact, which allows us to visualize the bifurcation that results in snap buckling.

References

1.
Sumners
,
D.
, and
Whittington
,
S.
,
1988
, “
Knots in Self-Avoiding Walks
,”
J. Phys. A: Math. Gen.
,
21
(
7
), p.
1689
.
2.
Sumners
,
D. W.
,
2011
, “
DNA Knots: Theory and Experiments
,”
Prog. Theor. Phys. Suppl.
,
191
, pp.
1
19
.
3.
Mann
,
J. K.
,
2007
,
DNA Knotting: Occurrences, Consequences & Resolution
,
The Florida State University
,
Tallahassee, FL
.
4.
Marenduzzo
,
D.
,
Micheletti
,
C.
,
Orlandini
,
E.
, and
Sumners
,
D. W.
,
2013
, “
Topological Friction Strongly Affects Viral DNA Ejection
,”
Proc. Natl. Acad. Sci. USA
,
110
(
50
), pp.
20081
20086
.
5.
Ziegler
,
F.
,
Lim
,
N. C.
,
Mandal
,
S. S.
,
Pelz
,
B.
,
Ng
,
W.-P.
,
Schlierf
,
M.
,
Jackson
,
S. E.
, and
Rief
,
M.
,
2016
, “
Knotting and Unknotting of a Protein in Single Molecule Experiments
,”
Proc. Natl. Acad. Sci. USA
,
113
(
27
), pp.
7533
7538
.
6.
Wagner
,
J. R.
,
Brunzelle
,
J. S.
,
Forest
,
K. T.
, and
Vierstra
,
R. D.
,
2005
, “
A Light-Sensing Knot Revealed by the Structure of the Chromophore-Binding Domain of Phytochrome
,”
Nature
,
438
(
7066
), pp.
325
331
.
7.
Lim
,
N. C.
, and
Jackson
,
S. E.
,
2015
, “
Molecular Knots in Biology and Chemistry
,”
J. Phys.: Condens. Matter.
,
27
(
35
), p.
354101
.
8.
Arai
,
Y.
,
Yasuda
,
R.
,
Akashi
,
K.-I.
,
Harada
,
Y.
,
Miyata
,
H.
,
Kinosita
,
K.
, and
Itoh
,
H.
,
1999
, “
Tying a Molecular Knot With Optical Tweezers
,”
Nature
,
399
(
6735
), pp.
446
448
.
9.
Leigh
,
D. A.
,
Pirvu
,
L.
, and
Schaufelberger
,
F.
,
2019
, “
Stereoselective Synthesis of Molecular Square and Granny Knots
,”
J. Am. Chem. Soc.
,
141
(
14
), pp.
6054
6059
.
10.
Moulton
,
D. E.
,
Grandgeorge
,
P.
, and
Neukirch
,
S.
,
2018
, “
Stable Elastic Knots With No Self-Contact
,”
J. Mech. Phys. Solids
,
116
, pp.
33
53
.
11.
Bergou
,
M.
,
Wardetzky
,
M.
,
Robinson
,
S.
,
Audoly
,
B.
, and
Grinspun
,
E.
,
2008
, “
Discrete Elastic Rods
,”
ACM Trans. Graphics (TOG)
, pp.
1
12
.
12.
Spillmann
,
J.
, and
Teschner
,
M.
,
2008
, “
An Adaptive Contact Model for the Robust Simulation of Knots
,”
Comput. Graphics Forum
,
27
(
2
), pp.
497
506
. Wiley Online Library.
13.
Lee
,
S. J.
, and
Hashash
,
Y. M.
,
2015
, “
idem: An Impulse-Based Discrete Element Method for Fast Granular Dynamics
,”
Int. J. Numer. Methods Eng.
,
104
(
2
), pp.
79
103
.
14.
Choi
,
A.
,
Tong
,
D.
,
Jawed
,
M. K.
, and
Joo
,
J.
,
2021
, “
Implicit Contact Model for Discrete Elastic Rods in Knot Tying
,”
ASME J. Appl. Mech.
,
88
(
5
), p.
051010
.
15.
Li
,
M.
,
Ferguson
,
Z.
,
Schneider
,
T.
,
Langlois
,
T.
,
Zorin
,
D.
,
Panozzo
,
D.
,
Jiang
,
C.
, and
Kaufman
,
D. M.
,
2020
, “
Incremental Potential Contact: Intersection- and Inversion-Free, Large-Deformation Dynamics
,”
ACM Trans. Graphics (TOG)
,
39
(
4
), pp.
49:1
49:20
.
16.
Patil
,
V. P.
,
Sandt
,
J. D.
,
Kolle
,
M.
, and
Dunkel
,
J.
,
2020
, “
Topological Mechanics of Knots and Tangles
,”
Science
,
367
(
6473
), pp.
71
75
.
17.
Tong
,
D.
,
Choi
,
A.
,
Joo
,
J.
, and
Jawed
,
M. K.
,
2023
, “
A Fully Implicit Method for Robust Frictional Contact Handling in Elastic Rods
,”
Extreme Mech. Lett.
,
58
, p.
101924
.
18.
Jean
,
M.
, and
Moreau
,
J. J.
,
1987
, “Dynamics in the Presence of Unilateral Contacts and Dry Friction: A Numerical Approach,”
Unilateral Problems in Structural Analysis—2
,
G.
Del Piero
and
F.
Maceri
, eds.,
Springer
, Berlin, pp.
151
196
.
19.
Jean
,
M.
, and
Moreau
,
J. J.
,
1992
, “
Unilaterality and Dry Friction in the Dynamics of Rigid Body Collections
,”
1st Contact Mechanics International Symposium
,
Lausanne, Switzerland
.
20.
Alart
,
P.
, and
Curnier
,
A.
,
1991
, “
A Mixed Formulation for Frictional Contact Problems Prone to Newton Like Solution Methods
,”
Comput. Methods Appl. Mech. Eng.
,
92
(
3
), pp.
353
375
.
21.
Bertails-Descoubes
,
F.
,
Cadoux
,
F.
,
Daviet
,
G.
, and
Acary
,
V.
,
2011
, “
A Nonsmooth Newton Solver for Capturing Exact Coulomb Friction in Fiber Assemblies
,”
ACM Trans. Graphics (TOG)
,
30
(
1
), pp.
1
14
.
22.
Daviet
,
G.
,
Bertails-Descoubes
,
F.
, and
Boissieux
,
L.
,
2011
, “
A Hybrid Iterative Solver for Robustly Capturing Coulomb Friction in Hair Dynamics
,”
ACM Trans. Graphics (TOG)
,
30
(
6
), pp.
1
12
.
23.
Kaufman
,
D. M.
,
Tamstorf
,
R.
,
Smith
,
B.
,
Aubry
,
J.-M.
, and
Grinspun
,
E.
,
2014
, “
Adaptive Nonlinearity for Collisions in Complex Rod Assemblies
,”
ACM Trans. Graphics (TOG)
,
33
(
4
), pp.
1
12
.
24.
Bergou
,
M.
,
Audoly
,
B.
,
Vouga
,
E.
,
Wardetzky
,
M.
, and
Grinspun
,
E.
,
2010
, “
Discrete Viscous Threads
,”
ACM Trans. Graphics (TOG)
,
29
(
4
), pp.
1
10
.
25.
Daviet
,
G.
,
2020
, “
Simple and Scalable Frictional Contacts for Thin Nodal Objects
,”
ACM Trans. Graphics (TOG)
,
39
(
4
), p.
61–1
.
26.
Schweickart
,
E.
,
James
,
D. L.
, and
Marschner
,
S.
,
2017
, “
Animating Elastic Rods With Sound
,”
ACM Trans. Graphics (TOG)
,
36
(
4
), pp.
1
10
.
27.
Forterre
,
Y.
,
Skotheim
,
J. M.
,
Dumais
,
J.
, and
Mahadevan
,
L.
,
2005
, “
How the Venus Flytrap Snaps
,”
Nature
,
433
(
7024
), pp.
421
425
.
28.
Kebadze
,
E.
,
Guest
,
S.
, and
Pellegrino
,
S.
,
2004
, “
Bistable Prestressed Shell Structures
,”
Int. J. Solids Struct.
,
41
(
11–12
), pp.
2801
2820
.
29.
Pandey
,
A.
,
Moulton
,
D. E.
,
Vella
,
D.
, and
Holmes
,
D. P.
,
2014
, “
Dynamics of Snapping Beams and Jumping Poppers
,”
EPL (Europhys. Lett.)
,
105
(
2
), p.
24001
.
30.
Tong
,
D.
,
Borum
,
A.
, and
Jawed
,
M. K.
,
2021
, “
Automated Stability Testing of Elastic Rods With Helical Centerlines Using a Robotic System
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
1126
1133
.
31.
Chen
,
T.
,
Bilal
,
O. R.
,
Shea
,
K.
, and
Daraio
,
C.
,
2018
, “
Harnessing Bistability for Directional Propulsion of Soft, Untethered Robots
,”
Proc. Natl. Acad. Sci.
,
115
(
22
), pp.
5698
5702
.
32.
Gomez
,
M.
,
Moulton
,
D. E.
, and
Vella
,
D.
,
2017
, “
Critical Slowing Down in Purely Elastic ‘Snap-Through Instabilities
,”
Nat. Phys.
,
13
(
2
), pp.
142
145
.
33.
Sano
,
T. G.
, and
Wada
,
H.
,
2019
, “
Twist-Induced Snapping in a Bent Elastic Rod and Ribbon
,”
Phys. Rev. Lett.
,
122
(
11
), p.
114301
.
34.
Starostin
,
E.
, and
van der Heijden
,
G.
,
2008
, “
Tension-Induced Multistability in Inextensible Helical Ribbons
,”
Phys. Rev. Lett.
,
101
(
8
), p.
084301
.
35.
Morigaki
,
Y.
,
Wada
,
H.
, and
Tanaka
,
Y.
,
2016
, “
Stretching an Elastic Loop: Crease, Helicoid, and Pop Out
,”
Phys. Rev. Lett.
,
117
(
19
), p.
198003
.
36.
Yu
,
T.
, and
Hanna
,
J.
,
2019
, “
Bifurcations of Buckled, Clamped Anisotropic Rods and Thin Bands Under Lateral End Translations
,”
J. Mech. Phys. Solids
,
122
, pp.
657
685
.
37.
Zhang
,
Y.
,
Jiao
,
Y.
,
Wu
,
J.
,
Ma
,
Y.
, and
Feng
,
X.
,
2020
, “
Configurations Evolution of a Buckled Ribbon in Response to Out-of-Plane Loading
,”
Extreme Mech. Lett.
,
34
, p.
100604
.
38.
Wan
,
G.
,
Liu
,
Y.
,
Xu
,
Z.
,
Jin
,
C.
,
Dong
,
L.
,
Han
,
X.
,
Zhang
,
J. X.
, and
Chen
,
Z.
,
2020
, “
Tunable Bistability of a Clamped Elastic Beam
,”
Extreme Mech. Lett.
,
34
, p.
100603
.
39.
Bende
,
N. P.
,
Evans
,
A. A.
,
Innes-Gold
,
S.
,
Marin
,
L. A.
,
Cohen
,
I.
,
Hayward
,
R. C.
, and
Santangelo
,
C. D.
,
2015
, “
Geometrically Controlled Snapping Transitions in Shells With Curved Creases
,”
Proc. Natl. Acad. Sci. USA
,
112
(
36
), pp.
11175
11180
.
40.
Pezzulla
,
M.
,
Stoop
,
N.
,
Jiang
,
X.
, and
Holmes
,
D. P.
,
2017
, “
Curvature-Driven Morphing of Non-Euclidean Shells
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
473
(
2201
), p.
20170087
.
41.
Jiang
,
X.
,
Pezzulla
,
M.
,
Shao
,
H.
,
Ghosh
,
T. K.
, and
Holmes
,
D. P.
,
2018
, “
Snapping of Bistable, Prestressed Cylindrical Shells
,”
EPL (Europhys. Lett.)
,
122
(
6
), p.
64003
.
42.
Lavrenčič
,
M.
, and
Brank
,
B.
,
2018
, “
Simulation of Shell Buckling by Implicit Dynamics and Numerically Dissipative Schemes
,”
Thin-Walled Struct.
,
132
, pp.
682
699
.
43.
Huang
,
N.-C.
,
1964
, “
Unsymmetrical Buckling of Thin Shallow Spherical Shells
,”
ASME J. Appl. Mech.
,
31
(
3
), pp.
447
457
.
44.
Lazarus
,
A.
,
Florijn
,
H.
, and
Reis
,
P. M.
,
2012
, “
Geometry-Induced Rigidity in Nonspherical Pressurized Elastic Shells
,”
Phys. Rev. Lett.
,
109
(
14
), p.
144301
.
45.
Shim
,
J.
,
Perdigou
,
C.
,
Chen
,
E. R.
,
Bertoldi
,
K.
, and
Reis
,
P. M.
,
2012
, “
Buckling-Induced Encapsulation of Structured Elastic Shells Under Pressure
,”
Proc. Natl. Acad. Sci. USA
,
109
(
16
), pp.
5978
5983
.
46.
Marthelot
,
J.
,
López Jiménez
,
F.
,
Lee
,
A.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2017
, “
Buckling of a Pressurized Hemispherical Shell Subjected to a Probing Force
,”
ASME J. Appl. Mech.
,
84
(
12
), p.
121005
.
47.
Evkin
,
A.
,
Kolesnikov
,
M.
, and
Prikazchikov
,
D. A.
,
2017
, “
Buckling of a Spherical Shell Under External Pressure and Inward Concentrated Load: Asymptotic Solution
,”
Math. Mech. Solids
,
22
(
6
), pp.
1425
1437
.
48.
Hutchinson
,
J. W.
, and
Thompson
,
J. M. T.
,
2018
, “
Imperfections and Energy Barriers in Shell Buckling
,”
Int. J. Solids Struct.
,
148
, pp.
157
168
.
49.
Coleman
,
B. D.
,
Swigon
,
D.
, and
Tobias
,
I.
,
2000
, “
Elastic Stability of Dna Configurations. II. Supercoiled Plasmids With Self-Contact
,”
Phys. Rev. E
,
61
(
1
), p.
759
.
50.
Thompson
,
J. M. T.
,
2008
, “
Single-Molecule Magnetic Tweezer Tests on DNA: Bounds on Topoisomerase Relaxation
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
464
(
2099
), pp.
2811
2829
.
51.
Audoly
,
B.
,
Clauvelin
,
N.
, and
Neukirch
,
S.
,
2007
, “
Elastic Knots
,”
Phys. Rev. Lett.
,
99
(
16
), p.
164301
.
52.
Przybyl
,
S.
, and
Pieranski
,
P.
,
2009
, “
Tightening of the Elastic Overhand Knot
,”
Phys. Rev. E
,
79
(
3
), p.
031801
.
53.
Jawed
,
M. K.
,
Dieleman
,
P.
,
Audoly
,
B.
, and
Reis
,
P. M.
,
2015
, “
Untangling the Mechanics and Topology in the Frictional Response of Long Overhand Elastic Knots
,”
Phys. Rev. Lett.
,
115
(
11
), p.
118302
.
54.
Clauvelin
,
N.
,
Audoly
,
B.
, and
Neukirch
,
S.
,
2009
, “
Matched Asymptotic Expansions for Twisted Elastic Knots: A Self-Contact Problem With Non-Trivial Contact Topology
,”
J. Mech. Phys. Solids
,
57
(
9
), pp.
1623
1656
.
55.
Jawed
,
M. K.
,
Da
,
F.
,
Joo
,
J.
,
Grinspun
,
E.
, and
Reis
,
P. M.
,
2014
, “
Coiling of Elastic Rods on Rigid Substrates
,”
Proc. Natl. Acad. Sci. USA
,
111
(
41
), pp.
14663
14668
.
56.
Lumelsky
,
V. J.
,
1985
, “
On Fast Computation of Distance Between Line Segments
,”
Inf. Process. Lett.
,
21
(
2
), pp.
55
61
.
You do not currently have access to this content.