Abstract

This work examines the sub-shear and super-shear steady-state growth of mode III fractures in flexoelectric materials, nonetheless, exhibiting Mach type shock wave patterns that resemble reported lattice dynamics results and three-dimensional calculations and experiments. Our mathematical models provide weak discontinuous solutions of the steady-state dynamic equations. In flexoelectric solids, super-shear rupture is possible with Mach lines appearing at sub-shear as well as super-shear crack rupture velocities. This is contrary to classical singular elastodynamics, where the notions of super-shear growth and hyperbolicity coincide. The results show that the deformation near the crack-tip agrees with studies based on lattice dynamics. In the first part of this work, a novel finite element approach has been developed where the problem is decomposed into two prestressed plates that are interconnected, resulting into the predicted radiation patterns and Mach lines. The polarization field is obtained from the calculated displacement field and is used in turn to calculate the magnetic and the electric fields. The analysis offers an analogy to the co-seismic magnetic fields encountered during mode III dominated earthquake rupture events.

References

1.
Deng
,
Q.
,
Lv
,
S.
,
Li
,
Z.
,
Tan
,
K.
,
Liang
,
X.
, and
Shen
,
S.
,
2020
, “
The Impact of Flexoelectricity on Materials, Devices, and Physics
,”
J. Appl. Phys.
,
128
(
8
), p.
080902
.
2.
Wang
,
B.
,
Gu
,
Y.
,
Zhang
,
S.
, and
Chen
,
L.
,
2019
, “
Flexoelectricity in Solids: Progress, Challenges, and Perspectives
,”
Prog. Mater. Sci.
,
106
(
1
), p.
100570
.
3.
Krichen
,
S.
, and
Sharma
,
P.
,
2016
, “
Flexoelectricity: A Perspective on an Unusual Electromechanical Coupling
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
030801
.
4.
Yudin
,
P. v.
, and
Tagantsev
,
A. K.
,
2013
, “
Fundamentals of Flexoelectricity in Solids
,”
Nanotechnology
,
24
(
43
), p.
432001
.
5.
Zubko
,
P.
,
Catalan
,
G.
, and
Tagantsev
,
A. K.
,
2013
, “
Flexoelectric Effect in Solids
,”
Annu. Rev. Mater. Res.
,
43
(
1
), pp.
387
421
.
6.
Tagantsev
,
A. K.
,
1991
, “
Electric Polarization in Crystals and Its Response to Thermal and Elastic Perturbations
,”
Phase Transitions
,
35
(
3–4
), pp.
119
203
.
7.
Majdoub
,
M. S.
,
Sharma
,
P.
, and
Cagin
,
T.
,
2008
, “
Enhanced Size-Dependent Piezoelectricity and Elasticity in Nanostructures Due to the Flexoelectric Effect
,”
Phys. Rev. B
,
77
(
12
), p.
125424
.
8.
Hu
,
S.
, and
Shen
,
S.
,
2009
, “
Electric Field Gradient Theory With Surface Effect for Nano-Dielectrics
,”
Comput. Mater. Contin.
,
13
(
1
), pp.
63
88
.
9.
Shen
,
S.
, and
Hu
,
S.
,
2010
, “
A Theory of Flexoelectricity With Surface Effect for Elastic Dielectrics
,”
J. Mech. Phys. Solids
,
58
(
5
), pp.
665
677
.
10.
Hu
,
T.
,
Yang
,
W.
,
Liang
,
X.
, and
Shen
,
S.
,
2018
, “
Wave Propagation in Flexoelectric Microstructured Solids
,”
J. Elast.
,
130
(
2
), pp.
197
210
.
11.
Tvergaard
,
V.
, and
Hutchinson
,
J.
,
2008
, “
Mode III Effects on Interface Delamination
,”
J. Mech. Phys. Solids
,
56
(
1
), pp.
215
229
.
12.
Yu
,
H.
, and
Yang
,
W.
,
1994
, “
Mechanics of Transonic Debonding of a Bimaterial Interface: The Anti-Plane Shear Case
,”
J. Mech. Phys. Solids
,
42
(
11
), pp.
1789
1802
.
13.
Gao
,
H.
,
Huang
,
Y.
,
Gumbsch
,
P.
, and
Rosakis
,
A. J.
,
1999
, “
On Radiation-Free Transonic Motion of Cracks and Dislocations
,”
J. Mech. Phys. Solids
,
47
(
9
), pp.
1941
1961
.
14.
Broberg
,
K. B.
,
1989
, “
The Near-Tip Field at High Crack Velocities
,”
Int. J. Fract.
,
39
(
1–3
), pp.
1
13
.
15.
Huang
,
Y.
,
Liu
,
C.
, and
Rosakis
,
A. J.
,
1996
, “
Transonic Crack Growth Along a Bimaterial Interface: An Investigation of the Asymptotic Structure of Near-Tip Fields
,”
Int. J. Solids Struct.
,
33
(
18
), pp.
2625
2645
.
16.
Chen
,
S.
, and
Gao
,
H.
,
2010
, “
Dynamic Behaviors of Mode III Interfacial Crack Under a Constant Loading Rate
,”
Contin. Mech. Thermodyn.
,
22
(
6–8
), pp.
515
530
.
17.
Burridge
,
R.
,
1973
, “
Admissible Speeds for Plane-Strain Self-Similar Shear Cracks With Friction but Lacking Cohesion
,”
Geophys. J. Int.
,
35
(
4
), pp.
439
455
.
18.
Freund
,
L. B.
,
1979
, “
The Mechanics of Dynamic Shear Crack Propagation
,”
J. Geophys. Res.
,
84
(
B5
), p.
2199
.
19.
Andrews
,
D. J.
,
1976
, “
Rupture Propagation With Finite Stress in Antiplane Strain
,”
J. Geophys. Res.
,
81
(
20
), pp.
3575
3582
.
20.
Rosakis
,
A. J.
,
Samudrala
,
O.
, and
Coker
,
D.
,
1999
, “
Cracks Faster Than the Shear Wave Speed
,”
Science
,
284
(
5418
), pp.
1337
1340
.
21.
Xia
,
K.
,
Rosakis
,
A. J.
, and
Kanamori
,
H.
,
2004
, “
Laboratory Earthquakes: The Sub-Rayleigh-to-Supershear Rupture Transition
,”
Science
,
303
(
5665
), pp.
1859
1861
.
22.
Rosakis
,
A. J.
,
Xia
,
K.
,
Lykotrafitis
,
G.
, and
Kanamori
,
H.
,
2007
, “Dynamic Shear Rupture in Frictional Interfaces: Speeds, Directionality, and Modes,”
Treatise on Geophysics
,
G.
Shubert
, ed., pp.
183
213
.
23.
Rosakis
,
A. J.
,
2002
, “
Intersonic Shear Cracks and Fault Ruptures
,”
Adv. Phys.
,
51
(
4
), pp.
1189
1257
.
24.
Burridge
,
R.
,
Conn
,
G.
, and
Freund
,
L. B.
,
1979
, “
The Stability of a Rapid Mode II Shear Crack With Finite Cohesive Traction
,”
J. Geophys. Res.
,
84
(
B5
), p.
2210
.
25.
Rosakis
,
P.
,
2001
, “
Supersonic Dislocation Kinetics From an Augmented Peierls Model
,”
Phys. Rev. Lett.
,
86
(
1
), pp.
95
98
.
26.
Dunham
,
E. M.
,
2007
, “
Conditions Governing the Occurrence of Supershear Ruptures Under Slip-Weakening Friction
,”
J. Geophys. Res.
,
112
(
B7
), p.
B07302
.
27.
Liu
,
Y.
, and
Lapusta
,
N.
,
2008
, “
Transition of Mode II Cracks From Sub-Rayleigh to Intersonic Speeds in the Presence of Favorable Heterogeneity
,”
J. Mech. Phys. Solids
,
56
(
1
), pp.
25
50
.
28.
Rezakhani
,
R.
,
Rubino
,
V.
,
Molinari
,
J. F.
, and
Rosakis
,
A.
,
2022
, “
Three-Dimensional Stress State During Dynamic Shear Rupture Propagation Along Frictional Interfaces in Elastic Plates
,”
Mech. Mater.
,
164
, p.
104098
.
29.
Willis
,
J. R.
,
1972
, “
The Penny-Shaped Crack on an Interface
,”
Q. J. Mech. Appl. Math.
,
25
(
3
), pp.
367
385
.
30.
Gao
,
H.
,
Huang
,
Y.
, and
Abraham
,
F. F.
,
2001
, “
Continuum and Atomistic Studies of Intersonic Crack Propagation
,”
J. Mech. Phys. Solids
,
49
(
9
), pp.
2113
2132
.
31.
Guozden
,
T. M.
, and
Jagla
,
E. A.
,
2005
, “
Supersonic Crack Propagation in a Class of Lattice Models of Mode III Brittle Fracture
,”
Phys. Rev. Lett.
,
95
(
22
), p.
224302
.
32.
Guo
,
G.
,
Yang
,
W.
, and
Huang
,
Y.
,
2003
, “
Supersonic Crack Growth in a Solid of Upturn Stress–Strain Relation Under Anti-Plane Shear
,”
J. Mech. Phys. Solids
,
51
(
11–12
), pp.
1971
1985
.
33.
Koizumi
,
H.
,
Kirchner
,
H. O. K.
, and
Suzuki
,
T.
,
2007
, “
Supersonic Crack Motion in a Harmonic Lattice
,”
Philos. Mag. Lett.
,
87
(
8
), pp.
589
593
.
34.
Guozden
,
T. M.
,
Jagla
,
E. A.
, and
Marder
,
M.
,
2010
, “
Supersonic Cracks in Lattice Models
,”
Int. J. Fract.
,
162
(
1–2
), pp.
107
125
.
35.
Archuleta
,
R. J.
,
1984
, “
A Faulting Model for the 1979 Imperial Valley Earthquake
,”
J. Geophys. Res. Solid Earth
,
89
(
B6
), pp.
4559
4585
.
36.
Bouchon
,
M.
, and
Vallée
,
M.
,
2003
, “
Observation of Long Supershear Rupture During the Magnitude 8.1 Kunlunshan Earthquake
,”
Science
,
301
(
5634
), pp.
824
826
.
37.
Bouchon
,
M.
,
Bouin
,
M.
,
Karabulut
,
H.
,
Toksöz
,
M. N.
,
Dietrich
,
M.
, and
Rosakis
,
A. J.
,
2001
, “
How Fast Is Rupture During an Earthquake? New Insights From the 1999 Turkey Earthquakes
,”
Geophys. Res. Lett.
,
28
(
14
), pp.
2723
2726
.
38.
Mello
,
M.
,
Bhat
,
H. S.
,
Rosakis
,
A. J.
, and
Kanamori
,
H.
,
2014
, “
Reproducing the Supershear Portion of the 2002 Denali Earthquake Rupture in Laboratory
,”
Earth Planet Sci. Lett.
,
387
, pp.
89
96
.
39.
Zeng
,
H.
,
Wei
,
S.
, and
Rosakis
,
A.
,
2022
, “
A Travel-Time Path Calibration Strategy for Back-Projection of Large Earthquakes and Its Application and Validation Through the Segmented Super-Shear Rupture Imaging of the 2002 Mw 7.9 Denali Earthquake
,”
J. Geophys. Res. Solid Earth
,
127
(
6
), pp.
1
23
.
40.
Fitterman
,
D. v.
,
1979
, “
Theory of Electrokinetic-Magnetic Anomalies in a Faulted Half-Space
,”
J. Geophys. Res.
,
84
(
B11
), p.
6031
.
41.
Giannakopoulos
,
A. E.
, and
Rosakis
,
A. J.
,
2022
, “
Dynamic Magneto-Flexoelectricity and Seismo-Electromagnetic Phenomena: Connecting Mechanical Response to Electromagnetic Signatures
,”
J. Mech. Phys. Solids
,
168
, p.
105058
.
42.
Varotsos
,
P.
, and
Alexopoulos
,
K.
,
1984
, “
Physical Properties of the Variations of the Electric Field of the Earth Preceding Earthquakes, I
,”
Tectonophysics
,
110
(
1–2
), pp.
73
98
.
43.
Yoshida
,
S.
,
Uyeshima
,
M.
, and
Nakatani
,
M.
,
1997
, “
Electric Potential Changes Associated With Slip Failure of Granite: Preseismic and Coseismic Signals
,”
J. Geophys. Res. Solid Earth
,
102
(
B7
), pp.
14883
14897
.
44.
Yoshida
,
S.
,
Clint
,
O. C.
, and
Sammonds
,
P. R.
,
1998
, “
Electric Potential Changes Prior to Shear Fracture in Dry and Saturated Rocks
,”
Geophys. Res. Lett.
,
25
(
10
), pp.
1577
1580
.
45.
Gokhberg
,
M. B.
,
Morgounov
,
V. A.
,
Yoshino
,
T.
, and
Tomizawa
,
I.
,
1982
, “
Experimental Measurement of Electromagnetic Emissions Possibly Related to Earthquakes in Japan
,”
J. Geophys. Res.
,
87
(
B9
), p.
7824
.
46.
Fenoglio
,
M. A.
,
Johnston
,
M. J. S.
, and
Byerlee
,
J. D.
,
1995
, “
Magnetic and Electric Fields Associated With Changes in High Pore Pressure in Fault Zones: Application to the Loma Prieta ULF Emissions
,”
J. Geophys. Res. Solid Earth
,
100
(
B7
), pp.
12951
12958
.
47.
Giannakopoulos
,
A. E.
, and
Zisis
,
T.
,
2021
, “
Uniformly Moving Antiplane Crack in Flexoelectric Materials
,”
Eur. J. Mech.—A/Solids
,
85
, p.
104136
.
48.
Ogawa
,
T.
,
Oike
,
K.
, and
Miura
,
T.
,
1985
, “
Electromagnetic Radiations From Rocks
,”
J. Geophys. Res.
,
90
(
D4
), p.
6245
.
49.
Kobayashi
,
H.
,
Horikawa
,
K.
,
Ogawa
,
K.
, and
Watanabe
,
K.
,
2014
, “
Impact Compressive and Bending Behaviour of Rocks Accompanied by Electromagnetic Phenomena
,”
Philos. Trans. R. Soc., A
,
372
(
2023
), p.
20130292
.
50.
Cress
,
G. O.
,
Brady
,
B. T.
, and
Rowell
,
G. A.
,
1987
, “
Sources of Electromagnetic Radiation From Fracture of Rock Samples in the Laboratory
,”
Geophys. Res. Lett.
,
14
(
4
), pp.
331
334
.
51.
Fifolt
,
D. A.
,
Petrenko
,
V. F.
, and
Schulson
,
E. M.
,
1993
, “
Preliminary Study of Electromagnetic Emissions From Cracks in Ice
,”
Philos. Mag. B
,
67
(
3
), pp.
289
299
.
52.
Evtushenko
,
A. A.
,
Maeno
,
N.
,
Petrenko
,
V. F.
, and
Ryzhkin
,
I. A.
,
1987
, “
Pseudopiezoelectric Effects in Ice
,”
J. Phys. Colloq.
,
48
(
C1
), pp.
C1
109
.
53.
Petrenko
,
V. F.
,
1993
, “
On the Nature of Electrical Polarization of Materials Caused by Cracks. Application to Ice Electromagnetic Emission
,”
Philos. Mag. B
,
67
(
3
), pp.
301
315
.
54.
Mindlin
,
R. D.
,
1968
, “
Polarization Gradient in Elastic Dielectrics
,”
Int. J. Solids Struct.
,
4
(
6
), pp.
637
642
.
55.
Maranganti
,
R.
, and
Sharma
,
P.
,
2009
, “
Atomistic Determination of Flexoelectric Properties of Crystalline Dielectrics
,”
Phys. Rev. B
,
80
(
5
), p.
054109
.
56.
Giannakopoulos
,
A. E.
, and
Rosakis
,
A. J.
,
2020
, “
Dynamics of Flexoelectric Materials: Subsonic, Intersonic, and Supersonic Ruptures and Mach Cone Formation
,”
J. Appl. Mech.
,
87
(
6
), p.
061004
.
57.
Giannakopoulos
,
A. E.
, and
Zisis
,
T.
,
2021
, “
Steady-State Antiplane Crack Considering the Flexoelectrics Effect: Surface Waves and Flexoelectric Metamaterials
,”
Arch. Appl. Mech.
,
91
(
2
), pp.
713
738
.
58.
Giannakopoulos
,
A. E.
, and
Zisis
,
T.
,
2019
, “
Uniformly Moving Screw Dislocation in Flexoelectric Materials
,”
Eur. J. Mech.—A/Solids
,
78
, p.
103843
.
59.
Maranganti
,
R.
,
Sharma
,
N. D.
, and
Sharma
,
P.
,
2006
, “
Electromechanical Coupling in Nonpiezoelectric Materials Due to Nanoscale Nonlocal Size Effects: Green’s Function Solutions and Embedded Inclusions
,”
Phys. Rev. B
,
74
(
1
), p.
014110
.
60.
Mishuris
,
G.
,
Piccolroaz
,
A.
, and
Radi
,
E.
,
2012
, “
Steady-State Propagation of a Mode III Crack in Couple Stress Elastic Materials
,”
Int. J. Eng. Sci.
,
61
, pp.
112
128
.
61.
Georgiadis
,
H. G.
,
2003
, “
The Mode III Crack Problem in Microstructured Solids Governed by Dipolar Gradient Elasticity: Static and Dynamic Analysis
,”
J. Appl. Mech.
,
70
(
4
), pp.
517
530
.
62.
Koizumi
,
H.
,
Kirchner
,
H. O. K.
, and
Suzuki
,
T.
,
2007
, “
Lattice Wave Emission From Moving Cracks
,”
Philos. Mag.
,
87
(
27
), pp.
4093
4107
.
63.
McClintock
,
F.
, and
Sukhatme
,
S. P.
,
1960
, “
Travelling Cracks in Elastic Materials Under Longitudinal Shear
,”
J. Mech. Phys. Solids
,
8
(
3
), pp.
187
193
.
64.
Tomizawa
,
I.
, and
Yamada
,
I.
,
1995
, “
Generation Mechanism of Electric Impulses Observed in Explosion Seismic Experiments
,”
J.Geomag.Geoelectr.
,
47
(
3
), pp.
313
324
.
65.
Curran
,
D. R.
,
Shockey
,
D. A.
, and
Winkler
,
S.
,
1970
, “
Crack Propagation at Supersonic Velocities
,”
Int. J. Frac. Mech.
,
6
(
3
), pp.
271
278
.
66.
Winkler
,
S.
,
Shockey
,
D. A.
, and
Curran
,
D. R.
,
1970
, “
Crack Propagation at Supersonic Velocities, I
,”
Int. J. Frac. Mech.
,
6
(
2
), pp.
151
158
.
67.
Arakawa
,
M.
,
Maeno
,
N.
, and
Higa
,
M.
,
1995
, “
Direct Observations of Growing Cracks in Ice
,”
J. Geophys. Res.
,
100
(
E4
), p.
7539
.
68.
Aleksandrov
,
V. M.
, and
Smetanin
,
B. I.
,
1990
, “
Supersonic Cleavage of an Elastic Strip
,”
J. Appl. Math. Mech.
,
54
(
5
), pp.
677
682
.
69.
Courant
,
R.
, and
Lax
,
A.
,
1955
, “
Remarks on Cauchy’s Problem for Hyperbolic Partial Differential Equations With Constant Coefficients in Several Independent Variables
,”
Commun. Pure Appl. Math.
,
8
(
4
), pp.
497
502
.
70.
Dunham
,
E. M.
,
2005
, “
Near-Source Ground Motion From Steady State Dynamic Rupture Pulses
,”
Geophys. Res. Lett.
,
32
(
3
), p.
L03302
.
71.
Bonet
,
J.
, and
Gil
,
A. J.
,
2021
, “
Mathematical Models of Supersonic and Intersonic Crack Propagation in Linear Elastodynamics
,”
Int. J. Fract.
,
229
(
1
), pp.
55
75
.
72.
Giannakopoulos
,
A. E.
,
Knisovitis
,
C.
,
Zisis
,
T.
, and
Rosakis
,
A. J.
,
2023
, “
Hyperbolicity, Mach Lines and Super-Shear Mode III Steady State Fracture in Magneto-Flexoelectric Materials, Part II: Crack-Tip Asymptotics (submitted)
,”
ASME J. Appl. Mech
.
73.
Gourgiotis
,
P. A.
, and
Bigoni
,
D.
,
2016
, “
Stress Channelling in Extreme Couple-Stress Materials Part I: Strong Ellipticity, Wave Propagation, Ellipticity, and Discontinuity Relations
,”
J. Mech. Phys. Solids
,
88
, pp.
150
168
.
74.
Timoshenko
,
S. P.
, and
Woinosky-Krieger
,
S.
,
1964
,
Theory of Plates and Shells
, 2nd ed.,
McGraw-Hill, New York
.
75.
Katsikadelis
,
J. T.
,
1994
, “
The Analog Equation Method—a Powerful BEM-Based Solution Technique for Solving Linear and Nonlinear Engineering Problems
,”
Trans. Model. Simul.
,
7
, pp.
167
182
.
76.
Gabet
,
L.
,
1993
, “
The Decomposition Method and Linear Partial Differential Equations
,”
Math. Comput. Model.
,
17
(
6
), pp.
11
22
.
77.
Friedman
,
A.
,
1958
, “
Interior Estimates for Parabolic Systems of Partial Differential Equations
,”
Indiana Univ. Math. J.
,
7
(
3
), pp.
393
417
.
78.
ABAQUS
,
2012
,
User Manual, Hibbit, H. D., Karlsson, B. I., Sorensen, E. P
.
79.
Chen
,
C. S.
,
Jiang
,
X.
,
Chen
,
W.
, and
Yao
,
G.
,
2015
, “
Fast Solution for Solving the Modified Helmholtz Equation With the Method of Fundamental Solutions
,”
Commun. Comput. Phys.
,
17
(
3
), pp.
867
886
.
80.
Yamada
,
I.
,
Masuda
,
K.
, and
Mizutani
,
H.
,
1989
, “
Electromagnetic and Acoustic Emission Associated With Rock Fracture
,”
Phys. Earth Planet. Inter.
,
57
(
1–2
), pp.
157
168
.
81.
Wang
,
H.
,
Jiang
,
X.
,
Wang
,
Y.
,
Stark
,
R. W.
,
van Aken
,
P. A.
,
Mannhart
,
J.
, and
Boschker
,
H.
,
2020
, “
Direct Observation of Huge Flexoelectric Polarization Around Crack Tips
,”
Nano Lett.
,
20
(
1
), pp.
88
94
.
82.
Cheng
,
H.
,
Huang
,
J.
, and
Leiterman
,
T. J.
,
2006
, “
An Adaptive Fast Solver for the Modified Helmholtz Equation in Two Dimensions
,”
J. Comput. Phys.
,
211
(
2
), pp.
616
637
.
83.
Colbrook
,
M. J.
,
Ayton
,
L. J.
, and
Fokas
,
A. S.
,
2019
, “
The Unified Transform for Mixed Boundary Condition Problems in Unbounded Domains
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
475
(
2222
), p.
20180605
.
84.
Fokas
,
A. S.
,
1997
, “
A Unified Transform Method for Solving Linear and Certain Nonlinear PDEs
,”
Proc. R. Soc. Lond. A Math. Phys. Eng. Sci.
,
453
(
1962
), pp.
1411
1443
.
85.
Ting
,
T. C. T.
, and
Li
,
Y.
,
1983
, “
Eulerian Formulation of Transport Equations for Three-Dimensional Shock Waves in Simple Elastic Solids
,”
J. Elast.
,
13
(
3
), pp.
295
310
.
You do not currently have access to this content.