Abstract

Flexoelectricity exists in all inhomogeneously deformed dielectric materials and is of great interest in engineering science, especially in microelectromechanical systems. However, the flexoelectricity is relatively small compared to the commonly known piezoelectricity. How to produce a considerably large flexoelectric effect and how to apply the effect to a large scale have concerned people for a long time. In this paper, we creatively amplify the flexoelectric effect without decreasing the structure scale by harnessing the electromechanical instability—the snap-through instability—of a curved dielectric plate subjected to a concentrated load. We formulate the electrostatic energy of the system and obtain the governing equations by taking the first variation of the free energy. In the analysis, we find that the thickness of the plate and the initial configuration affect the onset of the snap-through. Beyond that, we notice that flexoelectricity can lower the critical load of the snap-through instability. Importantly, we find that a large flexoelectricity can be generated by harnessing the instability. For a dielectric plate with thickness 2 × 10−7 m, the effective electromechanical coefficient is equal to 35 pC/N in the beginning; however, by using the instability, the effective coefficient can be increased to as high as 740 pC/N, which is 21 times higher after the instability. In the end, we tune the electromechanical behaviors by designing the curved plate’s thickness and configuration. This paper contributes to our understanding of the amplification of flexoelectric effects by harnessing snapping surfaces.

References

1.
Tagantsev
,
A. K.
,
1986
, “
Piezoelectricity and Flexoelectricity in Crystalline Dielectrics
,”
Phys. Rev. B
,
34
(
8
), p.
5883
.
2.
Sharma
,
N.
,
Maranganti
,
R.
, and
Sharma
,
P.
,
2007
, “
On the Possibility of Piezoelectric Nanocomposites Without Using Piezoelectric Materials
,”
J. Mech. Phys. Solids
,
55
(
11
), pp.
2328
2350
.
3.
Yudin
,
P.
, and
Tagantsev
,
A.
,
2013
, “
Fundamentals of Flexoelectricity in Solids
,”
Nanotechnology
,
24
(
43
), p.
432001
.
4.
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2014
, “
Flexoelectricity in Soft Materials and Biological Membranes
,”
J. Mech. Phys. Solids
,
62
, pp.
209
227
.
5.
Ahmadpoor
,
F.
, and
Sharma
,
P.
,
2015
, “
Flexoelectricity in Two-Dimensional Crystalline and Biological Membranes
,”
Nanoscale
,
7
(
40
), pp.
16555
16570
.
6.
Krichen
,
S.
, and
Sharma
,
P.
,
2016
, “
Flexoelectricity: A Perspective on an Unusual Electromechanical Coupling
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
030801
.
7.
Maranganti
,
R.
,
Sharma
,
N. D.
, and
Sharma
,
P.
,
2006
, “
Electromechanical Coupling in Nonpiezoelectric Materials Due to Nanoscale Nonlocal Size Effects: Green’s Function Solutions and Embedded Inclusions
,”
Phys. Rev. B
,
74
(
1
), p.
014110
.
8.
Majdoub
,
M. S.
,
Sharma
,
P.
, and
Çağin
,
T.
,
2008
, “
Enhanced Size-Dependent Piezoelectricity and Elasticity in Nanostructures Due to the Flexoelectric Effect
,”
Phys. Rev. B
,
77
(
12
), p.
125424
.
9.
Nguyen
,
T. D.
,
Mao
,
S.
,
Yeh
,
Y.-W.
,
Purohit
,
P. K.
, and
McAlpine
,
M. C.
,
2013
, “
Nanoscale Flexoelectricity
,”
Adv. Mater.
,
25
(
7
), pp.
946
974
.
10.
Abdollahi
,
A.
, and
Arias
,
I.
,
2015
, “
Constructive and Destructive Interplay Between Piezoelectricity and Flexoelectricity in Flexural Sensors and Actuators
,”
ASME J. Appl. Mech.
,
82
(
12
), p.
121003
.
11.
Yan
,
X.
,
Huang
,
W.
,
Kwon
,
S. R.
,
Yang
,
S.
,
Jiang
,
X.
, and
Yuan
,
F. G.
,
2013
, “
A Sensor for the Direct Measurement of Curvature Based on Flexoelectricity
,”
Smart Mater. Struct.
,
22
(
8
), p.
085016
.
12.
Majdoub
,
M. S.
,
Sharma
,
P.
, and
Çağin
,
T.
,
2008
, “
Dramatic Enhancement in Energy Harvesting for a Narrow Range of Dimensions in Piezoelectric Nanostructures
,”
Phys. Rev. B
,
78
(
12
), p.
121407
.
13.
Deng
,
Q.
,
Kammoun
,
M.
,
Erturk
,
A.
, and
Sharma
,
P.
,
2014
, “
Nanoscale Flexoelectric Energy Harvesting
,”
Int. J. Solids Struct.
,
51
(
18
), pp.
3218
3225
.
14.
Wang
,
B.
,
Yang
,
S.
, and
Sharma
,
P.
,
2019
, “
Flexoelectricity as a Universal Mechanism for Energy Harvesting From Crumpling of Thin Sheets
,”
Phys. Rev. B
,
100
(
3
), p.
035438
.
15.
Liu
,
J.
,
Chen
,
X.
,
Li
,
Y.
,
Guo
,
X.
,
Ge
,
H.
, and
Shen
,
Q.
,
2018
, “
Ferroelectric Polymer Nanostructure With Enhanced Flexoelectric Response for Force-Induced Memory
,”
Appl. Phys. Lett.
,
113
(
4
), p.
042903
.
16.
Rudquist
,
P.
,
Buivydas
,
M.
,
Komitov
,
L.
, and
Lagerwall
,
S. T.
,
1994
, “
Linear Electro-Optic Effect Based on Flexoelectricity in a Cholesteric With Sign Change of Dielectric Anisotropy
,”
J. Appl. Phys.
,
76
(
12
), pp.
7778
7783
.
17.
Bhaskar
,
U. K.
,
Banerjee
,
N.
,
Abdollahi
,
A.
,
Wang
,
Z.
,
Schlom
,
D. G.
,
Rijnders
,
G.
, and
Catalan
,
G.
,
2016
, “
A Flexoelectric Microelectromechanical System on Silicon
,”
Nat. Nanotechnol.
,
11
, pp.
263
266
.
18.
Bhaskar
,
U. K.
,
Banerjee
,
N.
,
Abdollahi
,
A.
,
Solanas
,
E.
,
Rijnders
,
G.
, and
Catalan
,
G.
,
2016
, “
Flexoelectric MEMS: Towards an Electromechanical Strain Diode
,”
Nanoscale
,
8
(
3
), pp.
1293
1298
.
19.
Liu
,
L.
, and
Sharma
,
P.
,
2013
, “
Flexoelectricity and Thermal Fluctuations of Lipid Bilayer Membranes: Renormalization of Flexoelectric, Dielectric, and Elastic Properties
,”
Phys. Rev. E
,
87
(
3
), p.
032715
.
20.
Torbati
,
M.
,
Mozaffari
,
K.
,
Liu
,
L.
, and
Sharma
,
P.
,
2022
, “
Coupling of Mechanical Deformation and Electromagnetic Fields in Biological Cells
,”
Rev. Mod. Phys.
,
94
(
2
), p.
025003
.
21.
Mashkevich
,
V. S.
, and
Tolpygo
,
K. B.
,
1957
, “
Electrical, Optical and Elastic Properties of Diamond Type Crystals
,”
Sov. Phys.-Solid State
,
5
(
3
), pp.
435
439
.
22.
Tolpygo
,
K. B.
,
1963
, “
Long Wavelength Oscillations of Diamond-Type Crystals Including Long Range Forces
,”
Sov. Phys.-Solid State
,
4
, pp.
1297
1305
.
23.
Kogan
,
S. M.
,
1964
, “
Piezoelectric Effect During Inhomogeneous Deformation and Acoustic Scattering of Carriers in Crystals
,”
Sov. Phys.-Solid State
,
5
(
10
), pp.
2067
2070
.
24.
Askar
,
A.
,
Lee
,
P. C. Y.
, and
Cakmak
,
A. S.
,
1970
, “
Lattice-Dynamics Approach to the Theory of Elastic Dielectrics With Polarization Gradient
,”
Phys. Rev. B
,
1
(
8
), pp.
3525
3537
.
25.
Marvan
,
M.
, and
Havránek
,
A.
,
2007
,
Flexoelectric Effect in Elastomers
. Relationships of Polymeric Structure and Properties.
26.
Grasinger
,
M.
,
Mozaffari
,
K.
, and
Sharma
,
P.
,
2021
, “
Flexoelectricity in Soft Elastomers and the Molecular Mechanisms Underpinning the Design and Emergence of Giant Flexoelectricity
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
21
), p.
e2102477118
.
27.
Maranganti
,
R.
, and
Sharma
,
P.
,
2009
, “
Atomistic Determination of Flexoelectric Properties of Crystalline Dielectrics
,”
Phys. Rev. B
,
80
(
5
), p.
054109
.
28.
Hong
,
J.
, and
Vanderbilt
,
D.
,
2013
, “
First-Principles Theory and Calculation of Flexoelectricity
,”
Phys. Rev. B
,
88
(
17
), p.
174107
.
29.
Dreyer
,
C. E.
,
Stengel
,
M.
, and
Vanderbilt
,
D.
,
2018
, “
Current-Density Implementation for Calculating Flexoelectric Coefficients
,”
Phys. Rev. B
,
98
(
7
), p.
075153
.
30.
Nguyen
,
B.
,
Zhuang
,
X.
, and
Rabczuk
,
T.
,
2019
, “
NURBS-Based Formulation for Nonlinear Electro-Gradient Elasticity in Semiconductors
,”
Comput. Meth. Appl. Mech. Eng.
,
346
, pp.
1074
1095
.
31.
Baroudi
,
S.
,
Najar
,
F.
, and
Jemai
,
A.
,
2018
, “
Static and Dynamic Analytical Coupled Field Analysis of Piezoelectric Flexoelectric Nanobeams: A Strain Gradient Theory Approach
,”
Int. J. Solids Struct.
,
135
, pp.
110
124
.
32.
Hadjesfandiari
,
A. R.
,
Hajesfandiari
,
A.
,
Zhang
,
H.
, and
Dargush
,
G.
,
2017
,
Size-Dependent Couple Stress Timoshenko Beam Theory
. No.
1–48
.
33.
Liang
,
X.
,
Hu
,
S.
, and
Shen
,
S.
,
2017
, “
Nanoscale Mechanical Energy Harvesting Using Piezoelectricity and Flexoelectricity
,”
Smart Mater. Struct.
,
26
(
3
), p.
035050
.
34.
Harris
,
P.
,
1965
, “
Mechanism for the Shock Polarization of Dielectrics
,”
J. Appl. Phys.
,
36
(
3
), pp.
739
741
.
35.
Ma
,
W.
, and
Cross
,
L.
,
2001
, “
Large Flexoelectric Polarization in Ceramic Lead Magnesium Niobate
,”
Appl. Phys. Lett.
,
79
(
26
), pp.
4420
4422
.
36.
Ma
,
W.
, and
Cross
,
L. E.
,
2001
, “
Observation of the Flexoelectric Effect in Relaxor Pb(Mg1/3Nb2/3)O3 Ceramics
,”
Appl. Phys. Lett.
,
78
(
19
), pp.
2920
2921
.
37.
Ma
,
W.
, and
Cross
,
L. E.
,
2002
, “
Flexoelectric Polarization of Barium Strontium Titanate in the Paraelectric State
,”
Appl. Phys. Lett.
,
81
(
18
), pp.
3440
3442
.
38.
Ma
,
W.
, and
Cross
,
L. E.
,
2005
, “
Flexoelectric Effect in Ceramic Lead Zirconate Titanate
,”
Appl. Phys. Lett.
,
86
(
7
), p.
072905
.
39.
Ma
,
W.
, and
Cross
,
L. E.
,
2006
, “
Flexoelectricity of Barium Titanate
,”
Appl. Phys. Lett.
,
88
(
23
), p.
232902
.
40.
Zubko
,
P.
,
Catalan
,
G.
,
Buckley
,
A.
,
Welche
,
P.
, and
Scott
,
J. F.
,
2007
, “
Strain Gradient Induced Polarization in SrTiO3 Single Crystals
,”
Phys. Rev. Lett.
,
99
(
16
), p.
167601
.
41.
Zhang
,
S.
,
Liu
,
K.
,
Xu
,
M.
,
Shen
,
H.
,
Chen
,
K.
,
Feng
,
B.
, and
Shen
,
S.
,
2017
, “
Investigation of the 2312 Flexoelectric Coefficient Component of Polyvinylidene Fluoride: Deduction, Simulation, and Mensuration
,”
Sci. Rep.
,
7
(
1
), p.
3134
.
42.
Abdollahi
,
A.
,
Peco
,
C.
,
Millán
,
D.
,
Arroyo
,
M.
, and
Arias
,
I.
,
2014
, “
Computational Evaluation of the Flexoelectric Effect in Dielectric Solids
,”
J. Appl. Phys.
,
116
(
9
), p.
093502
.
43.
Mao
,
Y.
,
Ai
,
S.
,
Xiang
,
X.
, and
Chen
,
C.
,
2016
, “
Theory for Dielectrics Considering the Direct and Converse Flexoelectric Effects and Its Finite Element Implementation
,”
Appl. Math. Model.
,
40
(
15–16
), pp.
7115
7137
.
44.
Deng
,
F.
,
Deng
,
Q.
, and
Shen
,
S.
,
2018
, “
A Three-Dimensional Mixed Finite Element for Flexoelectricity
,”
ASME J. Appl. Mech.
,
85
(
3
), p.
031009
.
45.
Liu
,
C.
,
Wang
,
J.
,
Xu
,
G.
,
Kamlah
,
M.
, and
Zhang
,
T.-Y.
,
2019
, “
An Isogeometric Approach to Flexoelectric Effect in Ferroelectric Materials
,”
Int. J. Solids Struct.
,
162
, pp.
198
210
.
46.
Rahmati
,
A. H.
,
Yang
,
S.
,
Bauer
,
S.
, and
Sharma
,
P.
,
2019
, “
Nonlinear Bending Deformation of Soft Electrets and Prospects for Engineering Flexoelectricity and Transverse (d31) Piezoelectricity
,”
Soft Matter
,
15
(
1
), pp.
127
148
.
47.
Wen
,
X.
,
Li
,
D.
,
Tan
,
K.
,
Deng
,
Q.
, and
Shen
,
S.
,
2019
, “
Flexoelectret: An Electret With a Tunable Flexoelectriclike Response
,”
Phys. Rev. Lett.
,
122
(
14
), p.
148001
.
48.
Zhang
,
S.
,
Liu
,
K.
,
Wen
,
X.
,
Wu
,
T.
,
Xu
,
M.
, and
Shen
,
S.
,
2019
, “
Converse Flexoelectricity With Relative Permittivity Gradient
,”
Appl. Phys. Lett.
,
114
(
5
), p.
052903
.
49.
Kundalwal
,
S. I.
,
Choyal
,
V. K.
,
Choyal
,
V.
,
Nevhal
,
S. K.
, and
Luhadiya
,
N.
,
2021
, “
Enhancement of Piezoelectric and Flexoelectric Response of Boron Nitride Sheet Superlattices Via Interface and Defect Engineering
,”
Phys. E: Low-Dimens. Syst. Nanostruct.
,
127
, p.
114563
.
50.
Narvaez
,
J.
,
Saremi
,
S.
,
Hong
,
J.
,
Stengel
,
M.
, and
Catalan
,
G.
,
2015
, “
Large Flexoelectric Anisotropy in Paraelectric Barium Titanate
,”
Phys. Rev. Lett.
,
115
(
3
), p.
037601
.
51.
Zhang
,
S.
,
Liu
,
K.
,
Wu
,
T.
,
Xu
,
M.
, and
Shen
,
S.
,
2019
, “
An Electro-Mechanical Behavior Enhancement Method: Geometric Design With Flexoelectricity
,”
Smart Mater. Struct.
,
28
(
2
), p.
025024
.
52.
Yan
,
D.
,
Wang
,
J.
,
Xiang
,
J.
,
Xing
,
Y.
, and
Shao
,
L.-H.
,
2023
, “
A Flexoelectricity-Enabled Ultrahigh Piezoelectric Effect of a Polymeric Composite Foam as a Strain-Gradient Electric Generator
,”
Sci. Adv.
,
9
(
2
), p.
eadc8845
.
53.
Zheng
,
X.
,
Chen
,
L.
,
Wang
,
B.
,
Yang
,
S.
, and
Zhou
,
S.
,
2023
, “
Fabrication and Analysis of Microcapsule Electrets With a Tunable Flexoelectric-Like Response
,”
ACS Appl. Mater. Interfaces
,
15
(
13
), pp.
17301
17308
.
54.
Chen
,
L.
,
Tan
,
K.
,
Yang
,
S.
, and
Deng
,
Q.
,
2022
, “
Evoking the Snap-Through Instability in Hard-Magnetic Soft Materials: Rapid Actuation and Giant Deformation
,”
Int. J. Solids Struct.
,
246–247
, p.
111607
.
55.
Tan
,
K.
,
Chen
,
L.
,
Yang
,
S.
, and
Deng
,
Q.
,
2022
, “
Dynamic Snap-Through Instability and Damped Oscillation of a Flat Arch of Hard Magneto-Active Elastomers
,”
Int. J. Mech. Sci.
,
230
, p.
107523
.
56.
Sahin
,
E.
, and
Dost
,
S.
,
1988
, “
A Strain-Gradients Theory of Elastic Dielectrics With Spatial Dispersion
,”
Int. J. Eng. Sci.
,
26
(
12
), pp.
1231
1245
.
57.
Zhong
,
J.
, and
Ross
,
S. D.
,
2021
, “
Differential Correction and Arc-Length Continuation Applied to Boundary Value Problems: Examples Based on Snap-Through of Circular Arches
,”
Appl. Math. Model.
,
97
, pp.
81
95
.
You do not currently have access to this content.