Abstract

The term “modification” often appears in physics, chemistry, biology, etc., but rarely in structural mechanics, this study proposes the concept of mechanically modified metastructures, which aims to modify conventional mechanical structures so that they can exhibit super-properties never possessed. In this study, we first introduce the coplanarly tension–torsion coupling (TTC) element into ligaments, and then analytically express the effect of the TTC component on the deformation of the general ligamentous model. Then, it is demonstrated that the TTC component can greatly tailor the mechanical properties of the prototypical structure via numerical and experimental results. The positive Poisson’s ratio can be transformed into the negative Poisson’s ratio by the mechanical modification. Moreover, it is found that the introduced TTC component can assist structures to open new bandgaps, and the location, width, and number of bandgaps can be further tuned by changing the mass and stiffness of the TTC component. This study provides a guideline for altering the mechanical properties of the structures not by changing the main geometric characteristics of the prototypical structure but only by introducing a small structural component.

References

1.
Yu
,
X.
,
Zhou
,
J.
,
Liang
,
H.
,
Jiang
,
Z.
, and
Wu
,
L.
,
2018
, “
Mechanical Metamaterials Associated With Stiffness, Rigidity and Compressibility: A Brief Review
,”
Prog. Mater. Sci.
,
94
, pp.
114
173
.
2.
Duan
,
K.
,
Li
,
L.
,
Hu
,
Y.
, and
Wang
,
X.
,
2017
, “
Damping Characteristic of Ni-Coated Carbon Nanotube/Copper Composite
,”
Mater. Des.
,
133
, pp.
455
463
.
3.
Duan
,
K.
,
Li
,
L.
,
Hu
,
Y.
, and
Wang
,
X.
,
2017
, “
Enhanced Interfacial Strength of Carbon Nanotube/Copper Nanocomposites Via Ni-Coating: Molecular-Dynamics Insights
,”
Phys. E: Low-Dimens. Syst. Nanostruct.
,
88
, pp.
259
264
.
4.
Holliday
,
R.
, and
Pugh
,
J. E.
,
1975
, “
DNA Modification Mechanisms and Gene Activity During Development
,”
Science
,
187
(
4173
), pp.
226
232
.
5.
Bertoldi
,
K.
,
Reis
,
P. M.
,
Willshaw
,
S.
, and
Mullin
,
T.
,
2010
, “
Negative Poisson’s Ratio Behavior Induced by an Elastic Instability
,”
Adv. Mater.
,
22
(
3
), pp.
361
366
.
6.
Taylor
,
M.
,
Francesconi
,
L.
,
Gerendás
,
M.
,
Shanian
,
A.
,
Carson
,
C.
, and
Bertoldi
,
K.
,
2014
, “
Low Porosity Metallic Periodic Structures With Negative Poisson’s Ratio
,”
Adv. Mater.
,
26
(
15
), pp.
2365
2370
.
7.
Lim
,
T.-C.
,
2017
, “
Analogies Across Auxetic Models Based on Deformation Mechanism
,”
Phys. Status Solidi (RRL)—Rapid Res. Lett.
,
11
(
6
), p.
1600440
.
8.
Ren
,
X.
,
Das
,
R.
,
Tran
,
P.
,
Ngo
,
T. D.
, and
Xie
,
Y. M.
,
2018
, “
Auxetic Metamaterials and Structures: A Review
,”
Smart Mater. Struct.
,
27
(
2
), p.
23001
.
9.
Zhang
,
E.
,
Liu
,
Y.
, and
Zhang
,
Y.
,
2018
, “
A Computational Model of Bio-Inspired Soft Network Materials for Analyzing Their Anisotropic Mechanical Properties
,”
ASME J. Appl. Mech.
,
85
(
7
), p.
071002
.
10.
Liu
,
J.
, and
Zhang
,
Y.
,
2018
, “
A Mechanics Model of Soft Network Materials With Periodic Lattices of Arbitrarily Shaped Filamentary Microstructures for Tunable Poisson’s Ratios
,”
ASME J. Appl. Mech.
,
85
(
5
), p.
051003
.
11.
Tang
,
H.
,
Jiang
,
X.
,
Ling
,
L.
,
Li
,
L.
, and
Hu
,
Y.
,
2020
, “
Highly Tailorable Electromechanical Properties of Auxetic Piezoelectric Ceramics With Ultra-Low Porosity
,”
J. Am. Ceram. Soc.
,
103
(
11
), pp.
6330
6347
.
12.
Tang
,
H.
,
Jiang
,
X.
,
Li
,
L.
,
Ling
,
L.
, and
Hu
,
Y.
,
2021
, “
Electromechanical Properties of Ultra-Low Porous Auxetic Piezocomposite: From the Perspective of Poisson’s Ratio
,”
J. Am. Ceram. Soc.
,
104
(
6
), pp.
2628
2645
.
13.
Prall
,
D.
, and
Lakes
,
R. S.
,
1997
, “
Properties of a Chiral Honeycomb With a Poisson’s Ratio of −1
,”
Int. J. Mech. Sci.
,
39
(
3
), pp.
305
314
.
14.
Alderson
,
A.
,
Alderson
,
K. L.
,
Attard
,
D.
,
Evans
,
K. E.
,
Gatt
,
R.
,
Grima
,
J. N.
,
Miller
,
W.
,
Ravirala
,
N.
,
Smith
,
C.
, and
Zied
,
K.
,
2010
, “
Elastic Constants of 3-, 4-and 6-Connected Chiral and Anti-Chiral Honeycombs Subject to Uniaxial In-Plane Loading
,”
Compos. Sci. Technol.
,
70
(
7
), pp.
1042
1048
.
15.
Alderson
,
A.
,
Alderson
,
K.
,
Chirima
,
G.
,
Ravirala
,
N.
, and
Zied
,
K.
,
2010
, “
The In-Plane Linear Elastic Constants and Out-of-Plane Bending of 3-Coordinated Ligament and Cylinder-Ligament Honeycombs
,”
Compos. Sci. Technol.
,
70
(
7
), pp.
1034
1041
.
16.
Grima
,
J. N.
,
Gatt
,
R.
, and
Farrugia
,
P. -S.
,
2008
, “
On the Properties of Auxetic Meta-Tetrachiral Structures
,”
Phys. Status Solidi (b)
,
245
(
3
), pp.
511
520
.
17.
Mizzi
,
L.
,
Attard
,
D.
,
Gatt
,
R.
,
Pozniak
,
A. A.
,
Wojciechowski
,
K. W.
, and
Grima
,
J. N.
,
2015
, “
Influence of Translational Disorder on the Mechanical Properties of Hexachiral Honeycomb Systems
,”
Compos. B Eng.
,
80
, pp.
84
91
.
18.
Rafsanjani
,
A.
, and
Pasini
,
D.
,
2016
, “
Bistable Auxetic Mechanical Metamaterials Inspired by Ancient Geometric Motifs
,”
Extreme Mech. Lett.
,
9
, pp.
291
296
.
19.
Wu
,
W.
,
Tao
,
Y.
,
Xia
,
Y.
,
Chen
,
J.
,
Lei
,
H.
,
Sun
,
L.
, and
Fang
,
D.
,
2017
, “
Mechanical Properties of Hierarchical Anti-Tetrachiral Metastructures
,”
Extreme Mech. Lett.
,
16
, pp.
18
32
.
20.
Wu
,
W.
,
Song
,
X.
,
Liang
,
J.
,
Xia
,
R.
,
Qian
,
G.
, and
Fang
,
D.
,
2018
, “
Mechanical Properties of Anti-Tetrachiral Auxetic Stents
,”
Compos. Struct.
,
185
, pp.
381
392
.
21.
Dudek
,
K. K.
,
Gatt
,
R.
,
Wojciechowski
,
K. W.
, and
Grima
,
J. N.
,
2020
, “
Self-Induced Global Rotation of Chiral and Other Mechanical Metamaterials
,”
Int. J. Solids Struct.
,
191
, pp.
212
219
.
22.
Zhang
,
W.
,
Zhao
,
S.
,
Scarpa
,
F.
,
Wang
,
J.
, and
Sun
,
R.
,
2021
, “
In-Plane Mechanical Behavior of Novel Auxetic Hybrid Metamaterials
,”
Thin-Walled Struct.
,
159
, p.
107191
.
23.
Wang
,
J.-X.
,
Yang
,
Q.-S.
,
Wei
,
Y.-L.
, and
Tao
,
R.
,
2021
, “
A Novel Chiral Metamaterial With Multistability and Programmable Stiffness
,”
Smart Mater. Struct.
,
30
(
6
), p.
065006
.
24.
Zhang
,
X. G.
,
Ren
,
X.
,
Jiang
,
W.
,
Zhang
,
X. Y.
,
Luo
,
C.
,
Zhang
,
Y.
, and
Xie
,
Y. M.
,
2022
, “
A Novel Auxetic Chiral Lattice Composite: Experimental and Numerical Study
,”
Compos. Struct.
,
282
, p.
115043
.
25.
Seetoh
,
I. P.
,
Leong
,
B.
,
Yi
,
E. L.
,
Markandan
,
K.
,
Kanaujia
,
P. K.
, and
Lai
,
C. Q.
,
2022
, “
Extremely Stiff and Lightweight Auxetic Metamaterial Designs Enabled by Asymmetric Strut Cross-Sections
,”
Extreme Mech. Lett.
,
52
, p.
101677
.
26.
Mizzi
,
L.
, and
Spaggiari
,
A.
,
2021
, “
Chiralisation of Euclidean Polygonal Tessellations for the Design of New Auxetic Metamaterials
,”
Mech. Mater.
,
153
, p.
103698
.
27.
Mizzi
,
L.
, and
Spaggiari
,
A.
,
2022
, “
Novel Chiral Honeycombs Based on Octahedral and Dodecahedral Euclidean Polygonal Tessellations
,”
Int. J. Solids Struct.
,
238
, p.
111428
.
28.
Fu
,
M.
,
Liu
,
F.
, and
Hu
,
L.
,
2018
, “
A Novel Category of 3D Chiral Material With Negative Poisson’s Ratio
,”
Compos. Sci. Technol.
,
160
, pp.
111
118
.
29.
Duan
,
S.
,
Xi
,
L.
,
Wen
,
W.
, and
Fang
,
D.
,
2020
, “
A Novel Design Method for 3D Positive and Negative Poisson’s Ratio Material Based on Tension-Twist Coupling Effects
,”
Compos. Struct.
,
236
, p.
111899
.
30.
Frenzel
,
T.
,
Kadic
,
M.
, and
Wegener
,
M.
,
2017
, “
Three-Dimensional Mechanical Metamaterials With a Twist
,”
Science
,
358
(
6366
), pp.
1072
1074
.
31.
Frenzel
,
T.
,
Hahn
,
V.
,
Ziemke
,
P.
,
Schneider
,
J. L. G.
,
Chen
,
Y.
,
Kiefer
,
P.
,
Gumbsch
,
P.
, and
Wegener
,
M.
,
2021
, “
Large Characteristic Lengths in 3D Chiral Elastic Metamaterials
,”
Commun. Mater.
,
2
(
1
), pp.
1
9
.
32.
Zheng
,
B.-B.
,
Zhong
,
R.-C.
,
Chen
,
X.
,
Fu
,
M.-H.
, and
Hu
,
L.-L.
,
2019
, “
A Novel Metamaterial With Tension–Torsion Coupling Effect
,”
Mater. Des.
,
171
, p.
107700
.
33.
Zhong
,
R.
,
Fu
,
M.
,
Chen
,
X.
,
Zheng
,
B.
, and
Hu
,
L.
,
2019
, “
A Novel Three-Dimensional Mechanical Metamaterial With Compression–Torsion Properties
,”
Compos. Struct.
,
226
, p.
111232
.
34.
Long
,
L.-R.
,
Fu
,
M.-H.
, and
Hu
,
L.-L.
,
2021
, “
Novel Metamaterials With Thermal–Torsion and Tensile–Torsion Coupling Effects
,”
Compos. Struct.
,
259
, p.
113429
.
35.
Gonella
,
S.
, and
Ruzzene
,
M.
,
2008
, “
Analysis of In-Plane Wave Propagation in Hexagonal and Re-Entrant Lattices
,”
J. Sound Vib.
,
312
(
1–2
), pp.
125
139
.
36.
Wang
,
G.
,
Wen
,
X.
,
Wen
,
J.
,
Shao
,
L.
, and
Liu
,
Y.
,
2004
, “
Two-Dimensional Locally Resonant Phononic Crystals With Binary Structures
,”
Phys. Rev. Lett.
,
93
(
15
), p.
154302
.
37.
Spadoni
,
A.
,
Ruzzene
,
M.
,
Gonella
,
S.
, and
Scarpa
,
F.
,
2009
, “
Phononic Properties of Hexagonal Chiral Lattices
,”
Wave Motion
,
46
(
7
), pp.
435
450
.
38.
Liu
,
X.-N.
,
Hu
,
G.-K.
,
Huang
,
G.-L.
, and
Sun
,
C.-T.
,
2011
, “
An Elastic Metamaterial With Simultaneously Negative Mass Density and Bulk Modulus
,”
Appl. Phys. Lett.
,
98
(
25
), p.
251907
.
39.
Qi
,
D.
,
Yu
,
H.
,
Hu
,
W.
,
He
,
C.
,
Wu
,
W.
, and
Ma
,
Y.
,
2019
, “
Bandgap and Wave Attenuation Mechanisms of Innovative Reentrant and Anti-Chiral Hybrid Auxetic Metastructure
,”
Extreme Mech. Lett.
,
28
, pp.
58
68
.
40.
Chen
,
W.
,
Tian
,
X.
,
Gao
,
R.
, and
Liu
,
S.
,
2018
, “
A Low Porosity Perforated Mechanical Metamaterial With Negative Poisson’s Ratio and Band Gaps
,”
Smart Mater. Struct.
,
27
(
11
), p.
115010
.
41.
Zhang
,
K.
,
Zhao
,
P.
,
Zhao
,
C.
,
Hong
,
F.
, and
Deng
,
Z.
,
2020
, “
Study on the Mechanism of Band Gap and Directional Wave Propagation of the Auxetic Chiral Lattices
,”
Compos. Struct.
,
238
, p.
111952
.
42.
Fei
,
X.
,
Jin
,
L.
,
Zhang
,
X.
,
Li
,
X.
, and
Lu
,
M.
,
2020
, “
Three-Dimensional Anti-Chiral Auxetic Metamaterial With Tunable Phononic Bandgap
,”
Appl. Phys. Lett.
,
116
(
2
), p.
021902
.
43.
Bacigalupo
,
A.
, and
Gambarotta
,
L.
,
2014
, “
Homogenization of Periodic Hexa-and Tetrachiral Cellular Solids
,”
Compos. Struct.
,
116
, pp.
461
476
.
44.
Bacigalupo
,
A.
, and
De Bellis
,
M. L.
,
2015
, “
Auxetic Anti-Tetrachiral Materials: Equivalent Elastic Properties and Frequency Band-Gaps
,”
Compos. Struct.
,
131
, pp.
530
544
.
45.
Bacigalupo
,
A.
, and
Gambarotta
,
L.
,
2016
, “
Simplified Modelling of Chiral Lattice Materials With Local Resonators
,”
Int. J. Solids Struct.
,
83
, pp.
126
141
.
46.
De Bellis
,
M. L.
, and
Bacigalupo
,
A.
,
2017
, “
Auxetic Behavior and Acoustic Properties of Microstructured Piezoelectric Strain Sensors
,”
Smart Mater. Struct.
,
26
(
8
), p.
85037
.
47.
Chen
,
Y.
, and
Wang
,
L.
,
2016
, “
Harnessing Structural Hierarchy to Design Stiff and Lightweight Phononic Crystals
,”
Extreme Mech. Lett.
,
9
, pp.
91
96
.
48.
Jiang
,
Y.
, and
Li
,
Y.
,
2017
, “
3D Printed Chiral Cellular Solids With Amplified Auxetic Effects Due to Elevated Internal Rotation
,”
Adv. Eng. Mater.
,
19
(
2
), p.
1600609
.
49.
Bahaloo
,
H.
, and
Li
,
Y.
,
2019
, “
Micropolar Modeling of Auxetic Chiral Lattices With Tunable Internal Rotation
,”
ASME J. Appl. Mech.
,
86
(
4
), p.
041002
.
50.
Chen
,
Y.
,
Scarpa
,
F.
,
Liu
,
Y.
, and
Leng
,
J.
,
2013
, “
Elasticity of Anti-Tetrachiral Anisotropic Lattices
,”
Int. J. Solids Struct.
,
50
(
6
), pp.
996
1004
.
51.
Masters
,
I. G.
, and
Evans
,
K. E.
,
1996
, “
Models for the Elastic Deformation of Honeycombs
,”
Compos. Struct.
,
35
(
4
), pp.
403
422
.
52.
Smith
,
C. W.
,
Grima
,
J. N.
, and
Evans
,
K.
,
2000
, “
A Novel Mechanism for Generating Auxetic Behaviour in Reticulated Foams: Missing Rib Foam Model
,”
Acta Mater.
,
48
(
17
), pp.
4349
4356
.
53.
Larsen
,
U. D.
,
Signund
,
O.
, and
Bouwsta
,
S.
,
1997
, “
Design and Fabrication of Compliant Micromechanisms and Structures With Negative Poisson’s Ratio
,”
J. Microelectromech. Syst.
,
6
(
2
), pp.
99
106
.
54.
Gao
,
Q.
,
Tan
,
C. A.
,
Hulbert
,
G.
, and
Wang
,
L.
,
2020
, “
Geometrically Nonlinear Mechanical Properties of Auxetic Double-V Microstructures With Negative Poisson’s Ratio
,”
Euro. J. Mech.-A/Solids
,
80
, p.
103933
.
55.
Gibson
,
L. J.
,
Ashby
,
M. F.
,
Schajer
,
G.
, and
Robertson
,
C.
,
1982
, “
The Mechanics of Two-Dimensional Cellular Materials
,”
Proc. R. Soc. Lond. A Math. Phys. Sci.
,
382
(
1782
), pp.
25
42
.
56.
Grima
,
J. N.
,
Gatt
,
R.
,
Alderson
,
A.
, and
Evans
,
K.
,
2005
, “
On the Potential of Connected Stars As Auxetic Systems
,”
Mol. Simul.
,
31
(
13
), pp.
925
935
.
57.
Meng
,
J.
,
Deng
,
Z.
,
Zhang
,
K.
,
Xu
,
X.
, and
Wen
,
F.
,
2015
, “
Band Gap Analysis of Star-Shaped Honeycombs With Varied Poisson’s Ratio
,”
Smart Mater. Struct.
,
24
(
9
), pp.
95011
.
58.
Jiang
,
Y.
,
2018
, “
Design, Mechanical Experiments and Modeling on a New Family of 3D Printed Hybrid Chiral Mechanical Metamaterials With Negative Poisson’s Ratio
,” Ph.D. thesis,
University of New Hampshire
,
Durham, NH
.
You do not currently have access to this content.