Abstract

This paper presents the viscoelastic analytical solution for stress and displacement due to prescribed time-varying changes in the pore fluid pressure of a disk-shaped inclusion embedded within a semi-infinite, viscoelastic medium. The correspondence principle of viscoelasticity, along with Hankel–Fourier and Laplace transforms, is used to derive the solution. The instantaneous viscoelastic solution, corresponding to the response immediately after the inclusion pore pressure change, recovers the elastic solution to the same problem (Geertsma 1973). Results are presented for fractional Maxwell and Burgers models of viscoelasticity after being applied to a set of experimental data from creep tests on shale. Solution results are demonstrated and discussed for the cases of constant inclusion depletion, as well as delayed injection of fluid into a previously depleted inclusion.

References

1.
Settari
,
A.
,
2002
, “
Reservoir Compaction
,”
J. Pet. Technol.
,
54
(
08
), pp.
62
69
.
2.
Segall
,
P.
, and
Fitzgerald
,
S. D.
,
1998
, “
A Note on Induced Stress Changes in Hydrocarbon and Geothermal Reservoirs
,”
Tectonophysics
,
289
(
1–3
), pp.
117
128
.
3.
Pratt
,
W. E.
, and
Johnson
,
D. W.
,
1926
, “
Local Subsidence of the Goose Creek Oil Field
,”
J. Geol.
,
34
(
7, Part 1
), pp.
577
590
.
4.
Kovach
,
R. L.
,
1974
, “
Source Mechanisms for Wilmington Oil Field, California, Subsidence Earthquakes
,”
Bull. Seismol. Soc. Am.
,
64
(
3–1
), pp.
699
711
.
5.
Wetmiller
,
R. J.
,
1986
, “
Earthquakes Near Rocky Mountain House, Alberta, and Their Relationship to Gas Production Facilities
,”
Can. J. Earth Sci.
,
23
(
2
), pp.
172
181
.
6.
Bruno
,
M. S.
,
1992
, “
Subsidence-Induced Well Failure
,”
SPE Drill. Eng.
,
7
(
02
), pp.
148
152
.
7.
Mohammed
,
A. I.
,
Oyeneyin
,
B.
,
Atchison
,
B.
, and
Njuguna
,
J.
,
2019
, “
Casing Structural Integrity and Failure Modes in a Range of Well Types—A Review
,”
J Nat. Gas Sci. Eng.
,
68
, p.
102898
.
8.
Griggs
,
D.
,
1939
, “
Creep of Rocks
,”
J. Geol.
,
47
(
3
), pp.
225
251
.
9.
Musso
,
G.
,
Volonté
,
G.
,
Gemelli
,
F.
,
Corradi
,
A.
,
Nguyen
,
S. K.
,
Lancellotta
,
R.
,
Brignoli
,
M.
, and
Mantica
,
S.
,
2021
, “
Evaluating the Subsidence Above Gas Reservoirs With an Elasto-Viscoplastic Constitutive Law. Laboratory Evidences and Case Histories
,”
Geomech. Energy Environ.
,
28
, p.
100246
.
10.
El Rabaa
,
A. W. M.
, and
Meadows
,
D. L.
,
1986
, “
Laboratory and Field Applications of the Strain Relaxation Method
,”
SPE California Regional Meeting
,
Oakland, CA
,
Apr. 2–4
,
Paper No. SPE 15072
.
11.
Warpinski
,
N. R.
, and
Teufel
,
L. W.
,
1989
, “
A Viscoelastic Constitutive Model for Determining In-situ Stress Magnitudes From Anelastic Strain Recovery of Core (Includes Associated Papers 19042 and 19892)
,”
SPE Prod. Eng.
,
4
(
3
), pp.
272
280
.
12.
Corapcioglu
,
M. Y.
, and
Brutsaert
,
W.
,
1977
, “
Viscoelastic Aquifer Model Applied to Subsidence due to Pumping
,”
Water Resour. Res.
,
13
(
3
), pp.
597
604
.
13.
Chang
,
C.
, and
Zoback
,
M. D.
,
2009
, “
Viscous Creep in Room-Dried Unconsolidated Gulf of Mexico Shale (I): Experimental Results
,”
J. Pet. Sci. Eng.
,
69
(
3–4
), pp.
239
246
.
14.
Bažant
,
Z. P.
,
Caner
,
F. C.
,
Adley
,
M. D.
, and
Akers
,
S. A.
,
2000
, “
Fracturing Rate Effect and Creep in Microplane Model for Dynamics
,”
J. Eng. Mech.
,
126
(
9
), pp.
962
970
.
15.
Geertsma
,
J.
,
1973
, “
Land Subsidence Above Compacting Oil and Gas Reservoirs
,”
J. Pet. Technol.
,
25
(
06
), pp.
734
744
.
16.
Geertsma
,
J.
,
1973
, “
A Basic Theory of Subsidence due to Reservoir Compaction, the Homogeneous Case
,”
Verhandelingen Kon. Ned. Geol. Mijnbouwk. Gen
,
28
, pp.
43
62
.
17.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
(
2
), pp.
155
164
.
18.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
179
191
.
19.
Verruijt
,
A.
,
1969
, “Elastic Storage of Aquifers,”
Flow Through Porous Media
, Vol.
1
,
R. J. M.
,
De Wiest
, ed.,
Academic Press
,
New York
, pp.
331
376
.
20.
Verruijt
,
A.
,
2013
,
Theory and Problems of Poroelasticity
,
Delft University of Technology
,
Delft, Netherlands
, p.
71
.
21.
Mehrabian
,
A.
, and
Abousleiman
,
Y. N.
,
2009
, “
The Dilative Intake of Poroelastic Inclusions an Alternative to the Mandel–Cryer Effect
,”
Acta Geotechnica
,
4
(
4
), pp.
249
259
.
22.
Segall
,
P.
,
1989
, “
Earthquakes Triggered by Fluid Extraction
,”
Geology
,
17
(
10
), pp.
942
946
.
23.
Du
,
J.
, and
Olson
,
J. E.
,
2001
, “
A Poroelastic Reservoir Model for Predicting Subsidence and Mapping Subsurface Pressure Fronts
,”
J. Pet. Sci. Eng.
,
30
(
3–4
), pp.
181
197
.
24.
Chan
,
A. W.
, and
Zoback
,
M. D.
,
2007
, “
The Role of Hydrocarbon Production on Land Subsidence and Fault Reactivation in the Louisiana Coastal Zone
,”
J. Coast. Res.
,
23
(
3
), pp.
771
786
.
25.
Fokker
,
P. A.
,
2002
, “
Subsidence Prediction and Inversion of Subsidence Data
,”
Proceedings of the SPE/ISRM Rock Mechanics Conference
,
Irving, TX
,
Oct. 20–23
,
Paper No. SPE/ISRM 78227
.
26.
Segall
,
P.
,
1992
, “
Induced Stresses due to Fluid Extraction From Axisymmetric Reservoirs
,”
Pure Appl. Geophys.
,
139
(
3
), pp.
535
560
.
27.
Rajapakse
,
R. K. N. D.
, and
Senjuntichai
,
T.
,
1993
, “
Fundamental Solutions for a Poroelastic Half-Space With Compressible Constituents
,”
ASME J. Appl. Mech.
,
60
(
4
), pp.
847
856
.
28.
Selvadurai
,
A. P. S.
, and
Samea
,
P.
,
2021
, “
Mechanics of a Pressurized Penny-Shaped Crack in a Poroelastic Halfspace
,”
Int. J. Eng. Sci.
,
163
, p.
103472
.
29.
Tempone
,
P.
,
Fjær
,
E.
, and
Landrø
,
M.
,
2010
, “
Improved Solution of Displacements due to a Compacting Reservoir Over a Rigid Basement
,”
Appl. Math. Model.
,
34
(
11
), pp.
3352
3362
.
30.
Song
,
Y.
,
Hu
,
H.
, and
Rudnicki
,
J. W.
,
2016
, “
Deriving Biot-Gassmann Relationship by Inclusion-Based Method
,”
Geophysics
,
81
(
6
), pp.
D657
D667
.
31.
Kelvin
,
W.
,
1875
, “
On the Theory of Viscoelastic Fluids
,”
J. Math. Phys.
,
3
, pp.
27
84
.
32.
Boltzmann
,
L.
,
1878
, “
Zur theorie der elastischen nachwirkung
,”
Annalen der Physik
,
241
(
11
), pp.
430
432
.
33.
Maxwell
,
J. C.
,
1867
, “
IV. On the Dynamical Theory of Gases
,”
Philos. Trans. R. Soc. London
,
157
, pp.
49
88
.
34.
Volterra
,
V.
,
1909
, “
Sulle equazioni integro-differenziali della theoria dell'elasticita
,”
Atti Reale Accad. naz. Lincei. Rend. Cl. sci. fis., mat. e natur.
,
18
, pp.
295
300
.
35.
Gross
,
B.
,
1947
, “
On Creep and Relaxation
,”
J. Appl. Phys.
,
18
(
2
), pp.
212
221
.
36.
Gurtin
,
M. E.
, and
Sternberg
,
E.
,
1962
, “
On the Linear Theory of Viscoelasticity
,”
Arch. Ration. Mech. Anal.
,
11
(
1
), pp.
291
356
.
37.
Read
W. T.
, Jr
1950
, “
Stress Analysis for Compressible Viscoelastic Materials
,”
J. Appl. Phys.
,
21
(
7
), pp.
671
674
.
38.
Lee
,
E. H.
,
1955
, “
Stress Analysis in Visco-Elastic Bodies
,”
Q. Appl. Math.
,
13
(
2
), pp.
183
190
.
39.
Sips
,
R.
,
1951
, “
General Theory of Deformation of Viscoelastic Substances
,”
J. Polym. Sci.
,
7
(
2-3
), pp.
191
205
.
40.
Meidav
,
T.
,
1964
, “
Viscoelastic Properties of the Standard Linear Solid
,”
Geophys. Prospect.
,
12
(
1
), pp.
80
99
.
41.
Scholz
,
C. H.
,
1968
, “
Mechanism of Creep in Brittle Rock
,”
J. Geophys. Res.
,
73
(
10
), pp.
3295
3302
.
42.
Biot
,
M. A.
,
1956
, “
Theory of Deformation of a Porous Viscoelastic Anisotropic Solid
,”
J. Appl. Phys.
,
27
(
5
), pp.
459
467
.
43.
Biot
,
M. A.
,
1962
, “
Mechanics of Deformation and Acoustic Propagation in Porous Media
,”
J. Appl. Phys.
,
33
(
4
), pp.
1482
1498
.
44.
Wong
,
H.
,
Morvan
,
M.
,
Deleruyelle
,
F.
, and
Leo
,
C. J.
,
2008
, “
Analytical Study of Mine Closure Behaviour in a Poro-visco-elastic Medium
,”
Int. J. Numer. Anal. Methods Geomech.
,
32
(
14
), pp.
1737
1761
.
45.
Hoang
,
S. K.
,
Abousleiman
,
Y. N.
, and
Hemphill
,
T.
,
2012
, “
Poroviscoelastic Modeling of Time-Dependent Wellbore Closure When Drilling Anisotropic Gas Shale and Oil Shale Reservoirs-Applications in the Haynesville Shale and the Colony Pilot Mine Shale
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Oct. 8–10
,
Paper No. SPE 159942
.
46.
Abousleiman
,
Y.
,
Cheng
,
A. D.
,
Jiang
,
C.
, and
Roegiers
,
J. C.
,
1996
, “
Poroviscoelastic Analysis of Borehole and Cylinder Problems
,”
Acta Mech.
,
119
(
1
), pp.
199
219
.
47.
Hoang
,
S. K.
, and
Abousleiman
,
Y. N.
,
2010
, “
Poroviscoelasticity of Transversely Isotropic Cylinders Under Laboratory Loading Conditions
,”
Mech. Res. Commun.
,
37
(
3
), pp.
298
306
.
48.
Guo
,
J.
,
Liu
,
C.
, and
Abousleiman
,
Y. N.
,
2019
, “
Transversely Isotropic Poroviscoelastic Bending Beam Solutions for Low-Permeability Porous Medium
,”
Mech. Res. Commun.
,
95
, pp.
1
7
.
49.
Zhang
,
W.
, and
Mehrabian
,
A.
,
2020
, “
Poroelastic Solution for the Nonlinear Injectivity of Subsurface Rocks With Strain-Induced Permeability Variations
,”
Water Resour. Res.
,
56
(
8
), p.
e2020WR027620
.
50.
Li
,
Y.
, and
Xia
,
C.
,
2000
, “
Time-Dependent Tests on Intact Rocks in Uniaxial Compression
,”
Int, J. Rock Mech. Mining Sci.
,
37
(
3
), pp.
467
475
.
51.
Christensen
,
R.
,
2012
,
Theory of Viscoelasticity: An Introduction
,
Elsevier
,
New York
.
52.
Cheng
,
A. H. D.
,
2016
,
Poroelasticity
,
Springer International Publishing
,
Switzerland
.
53.
Koeller
,
R.
,
1984
, “
Applications of Fractional Calculus to the Theory of Viscoelasticity
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
299
307
.
54.
Ding
,
X.
,
Zhang
,
G.
,
Zhao
,
B.
, and
Wang
,
Y.
,
2017
, “
Unexpected Viscoelastic Deformation of Tight Sandstone: Insights and Predictions From the Fractional Maxwell Model
,”
Sci. Rep.
,
7
(
1
),
11336
.
55.
Mainardi
,
F.
,
2010
, “
Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models
,”
World Sci.
56.
Ferry
,
J. D.
,
1980
,
Viscoelastic Properties of Polymers
,
John Wiley & Sons
,
New York
.
57.
Myklestad
,
N. O.
,
1942
, “
Two Problems of Thermal Stress in the Infinite Solid
,”
ASME. J. Appl. Mech.
,
9
(
3
), pp.
A136
A143
.
58.
Nowacki
,
W.
,
2013
,
Thermoelasticity
,
Elsevier
,
New York
.
59.
Wang
,
H. F.
,
2017
,
Theory of Linear Poroelasticity With Applications to Geomechanics and Hydrogeology
,
Princeton University Press
,
Princeton, NJ
.
60.
Mindlin
,
R. D.
, and
Cheng
,
D. H.
,
1950
, “
Thermoelastic Stress in the Semi-infinite Solid
,”
J. Appl. Phys.
,
21
(
9
), pp.
931
933
.
61.
Eason
,
G.
,
Noble
,
B.
, and
Sneddon
,
I. N.
,
1955
, “
On Certain Integrals of Lipschitz-Hankel Type Involving Products of Bessel Functions
,”
Philos. Trans. R. Soc. London, A, Math Phys Sci
,
247
(
935
), pp.
529
551
.
62.
Zhang
,
W.
, and
Mehrabian
,
A.
,
2021
, “
Dimensionless Solutions for the Time-Dependent and Rate-Dependent Productivity Index of Wells in Deformable Reservoirs
,”
SPE J.
,
26
(
1
), pp.
1
23
.
63.
Su
,
X.
, and
Mehrabian
,
A.
,
2021
, “
Coupled Poroelastic Solutions for the Reservoir and Caprock Layers With the Overburden Confinement Effects
,”
Geomech. Energy Environ.
,
25
, p.
100215
.
64.
Durbin
,
F.
,
1974
, “
Numerical Inversion of Laplace Transforms: An Efficient Improvement to Dubner and Abate's Method
,”
Comput. J.
,
17
(
4
), pp.
371
376
.
65.
Bucher
,
K.
, and
Frey
,
M.
,
2002
,
Petrogenesis of Metamorphic Rocks
,
Springer Science & Business Media
,
Heidelberg
.
66.
Chang
,
C.
,
Mallman
,
E.
, and
Zoback
,
M.
,
2014
, “
Time-Dependent Subsidence Associated With Drainage-Induced Compaction in Gulf of Mexico Shales Bounding a Severely Depleted Gas Reservoir
,”
AAPG Bull.
,
98
(
6
), pp.
1145
1159
.
67.
Hettema
,
M.
,
Papamichos
,
E.
, and
Schutjens
,
P. M. T. M.
,
2002
, “
Subsidence Delay: Field Observations and Analysis
,”
Oil Gas Sci Technol.
,
57
(
5
), pp.
443
458
.
68.
Voyiadjis
,
G. Z.
, and
Zhou
,
Y.
,
2018
, “
Time-Dependent Modeling of Subsidence due to Drainage in Bounding Shales: Application to a Depleted Gas Field in Louisiana
,”
J. Pet. Sci. Eng.
,
166
, pp.
175
187
.
69.
Fokker
,
P. A.
, and
Orlic
,
B.
,
2006
, “
Semi-Analytic Modelling of Subsidence
,”
Math. Geol.
,
38
(
5
), pp.
565
589
.
70.
Mehrabian
,
A.
, and
Abousleiman
,
Y. N.
,
2015
, “
Geertsma’s Subsidence Solution Extended to Layered Stratigraphy
,”
J. Pet. Sci. Eng.
,
130
, pp.
68
76
.
71.
Addis
,
M. A.
,
1997
, “
The Stress-Depletion Response of Reservoirs
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Oct. 5–8
,
Paper No. SPE 38720
.
72.
Zoback
,
M. D.
,
2010
,
Reservoir Geomechanics
,
Cambridge University Press
,
Cambridge
.
73.
Rutqvist
,
J.
,
2012
, “
The Geomechanics of CO2 Storage in Deep Sedimentary Formations
,”
Geotech Geol. Eng.
,
30
(
3
), pp.
525
551
.
74.
Zoback
,
M. D.
,
2012
, “
Managing the Seismic Risk Posed by Wastewater Disposal
,”
Earth
,
57
(
4
), p.
38
.
You do not currently have access to this content.