Abstract

Due to the stress concentration near crack tips, strong flexoelectric effect would be observed there, which might lead to new applications of flexoelectricity in material science and devices. However, different from the flexoelectric effect in cantilever beams or truncated pyramids, at the crack tip, multiple components of strain gradients with nonuniform distribution contribute to the flexoelectric effect, which makes the problem extremely complex. In this paper, with the consideration of both direct and converse flexoelectricity, the electromechanical coupling effect around the tip of a Mode III crack is studied analytically. Based on the Williams’ expansion method, the displacement field, polarization field, strain gradient field along with the actual physical stresses field are solved. A path-independent J-integral for Mode III cracks in flexoelectric solids is presented. Our results indicate that the existence of flexoelectricity leads to a decrease of both the J-integral and the out-of-plane displacement in Mode III cracks, which means that the flexoelectric effect around the tip of Mode III cracks enhances the local strength of materials.

References

1.
Yudin
,
P.
, and
Tagantsev
,
A.
,
2013
, “
Fundamentals of Flexoelectricity in Solids
,”
Nanotechnology
,
24
(
43
), p.
432001
.
2.
Zubko
,
P.
,
Catalan
,
G.
, and
Tagantsev
,
A. K.
,
2013
, “
Flexoelectric Effect in Solids
,”
Annu. Rev. Mater. Res.
,
43
(
1
), pp.
387
421
.
3.
Krichen
,
S.
, and
Sharma
,
P.
,
2016
, “
Flexoelectricity: A Perspective on an Unusual Electromechanical Coupling
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
030801
.
4.
Wang
,
B.
,
Gu
,
Y.
,
Zhang
,
S.
, and
Chen
,
L. Q.
,
2019
, “
Flexoelectricity in Solids: Progress, Challenges, and Perspectives
,”
Prog. Mater. Sci.
,
106
, p.
100570
.
5.
Zhuang
,
X.
,
Nguyen
,
B. H.
,
Nanthakumar
,
S. S.
,
Thai
,
T. Q.
,
Alajlan
,
N.
, and
Rabczuk
,
T.
,
2020
, “
Computational Modeling of Flexoelectricity-A Review
,”
Energies
,
13
(
6
), p.
1326
.
6.
Deng
,
Q.
,
Lv
,
S.
,
Li
,
Z.
,
Tan
,
K.
, and
Shen
,
S.
,
2020
, “
The Impact of Flexoelectricity on Materials, Devices, and Physics
,”
J. Appl. Phys.
,
128
(
8
), p.
080902
.
7.
Mashkevich
,
V. S.
, and
Tolpygo
,
K. B.
,
1957
, “
Electrical, Optical and Elastic Properties of Diamond Type Crystals
,”
Sov. Phys. JETP
,
5
(
3
), pp.
435
439
.
8.
Toupin
,
R. A.
,
1962
, “
Elastic Materials With Couple-Stresses
,”
Arch. Ration. Mech. Anal.
,
11
(
1
), pp.
385
414
.
9.
Mbarki
,
R.
,
Baccam
,
N.
,
Dayal
,
K.
, and
Sharma
,
P.
,
2014
, “
Piezoelectricity Above the Curie Temperature? Combining Flexoelectricity and Functional Grading to Enable High-Temperature Electromechanical Coupling
,”
Appl. Phys. Lett.
,
104
(
12
), p.
122904
.
10.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1997
, “
Strain Gradient Plasticity
,”
Adv. Appl. Mech.
,
33
, pp.
295
361
.
11.
Zhang
,
L.
,
Huang
,
Y.
,
Chen
,
J. Y.
, and
Hwang
,
K. C.
,
1998
, “
The Mode III Full-Field Solution in Elastic Materials With Strain Gradient Effects
,”
Int. J. Fract..
,
92
(
4
), pp.
325
348
.
12.
Huang
,
Y.
,
Chen
,
J. Y.
,
Guo
,
T. F.
,
Zhang
,
L.
, and
Hwang
,
K. C.
,
1999
, “
Analytic and Numerical Studies on Mode I and Mode II Fracture in Elastic-Plastic Materials With Strain Gradient Effects
,”
Int. J. Fract.
,
100
(
1
), pp.
1
27
.
13.
Georgiadis
,
H. G.
,
2003
, “
The Mode III Crack Problem in Microstructured Solids Governed by Dipolar Gradient Elasticity: Static and Dynamic Analysis
,”
ASME. J. Appl. Mech.
,
70
(
4
), pp.
517
530
.
14.
Gourgiotis
,
P. A.
, and
Georgiadis
,
H. G.
,
2009
, “
Plane-Strain Crack Problems in Microstructured Solids Governed by Dipolar Gradient Elasticity
,”
J. Mech. Phys. Solids
,
57
(
11
), pp.
1898
1920
.
15.
Arava
,
N.
, and
Giannakopoulos
,
A. E.
,
2009
, “
Plane Asymptotic Crack-Tip Solutions in Gradient Elasticity
,”
Int. J. Solids. Struct.
,
46
(
25–26
), pp.
4478
4503
.
16.
Wang
,
B.
,
Yang
,
S.
, and
Sharma
,
P.
,
2019
, “
Flexoelectricity as a Universal Mechanism for Energy Harvesting From Crumpling of Thin Sheets
,”
Phys. Rev. B
,
100
(
3
), pp.
1
11
.
17.
Cordero-Edwards
,
K.
,
Kianirad
,
H.
,
Canalias
,
C.
,
Sort
,
J.
, and
Catalan
,
G.
,
2019
, “
Flexoelectric Fracture-Ratchet Effect in Ferroelectrics
,”
Phys. Rev. Lett.
,
122
(
13
), p.
135502
.
18.
Wang
,
H.
,
Jiang
,
X.
,
Wang
,
Y.
,
Stark
,
R. W.
,
van Aken
,
P. A.
,
Mannhart
,
J.
, and
Boschker
,
H.
,
2020
, “
Direct Observation of Huge Flexoelectric Polarization Around Crack Tips
,”
Nano. Lett.
,
20
(
1
), pp.
88
94
.
19.
Vasquez-Sancho
,
F.
,
Abdollahi
,
A.
,
Damjanovic
,
D.
, and
Catalan
,
G.
,
2018
, “
Flexoelectricity in Bones
,”
Adv. Mater.
,
30
(
1
), p.
1705316
.
20.
Nunez-Toldra
,
R.
,
Vasquez-Sancho
,
F.
,
Barroca
,
N.
, and
Catalan
,
G.
,
2020
, “
Investigation of the Cellular Response to Bone Fractures: Evidence for Flexoelectricity
,”
Sci. Rep.
,
10
(
1
), p.
254
.
21.
Mindlin
,
R. D.
,
1968
, “
Polarization Gradient in Elastic Dielectrics
,”
Int. J. Solids. Struct.
,
4
(
6
), pp.
637
642
.
22.
Sahin
,
E.
, and
Dost
,
S.
,
1988
, “
A Strain-Gradients Theory of Elastic Dielectrics With Spatial-Dispersion
,”
Int. J. Eng. Sci.
,
26
(
12
), pp.
1231
1245
.
23.
Maranganti
,
R.
,
Sharma
,
N. D.
, and
Sharma
,
P.
,
2006
, “
Electromechanical Coupling in Nonpiezoelectric Materials Due to Nanoscale Nonlocal Size Effects: Green’s Function Solutions and Embedded Inclusions
,”
Phys. Rev. B
,
74
(
1
), p.
014110
.
24.
Sharma
,
N. D.
,
Maranganti
,
R.
, and
Sharma
,
P.
,
2007
, “
On the Possibility of Piezoelectric Nanocomposites Without Using Piezoelectric Materials
,”
J. Mech. Phys. Solids
,
55
(
11
), pp.
2328
2350
.
25.
Shen
,
S. P.
, and
Hu
,
S. L.
,
2010
, “
A Theory of Flexoelectricity With Surface Effect for Elastic Dielectrics
,”
J. Mech. Phys. Solids
,
58
(
5
), pp.
665
677
.
26.
Grasinger
,
M.
,
Mozaffari
,
K.
, and
Sharma
,
P.
,
2021
, “
Flexoelectricity in Soft Elastomers and the Molecular Mechanisms Underpinning the Design and Emergence of Giant Flexoelectricity
,”
Proc. Natl. Acad. Sci.
,
118
(
21
), p.
030801
.
27.
Rahmati
,
A. H.
,
Yang
,
S.
,
Bauer
,
S.
, and
Sharma
,
P.
,
2019
, “
Nonlinear Bending Deformation of Soft Electrets and Prospects for Engineering Flexoelectricity and Transverse (d31) Piezoelectricity
,”
Soft. Matter.
,
15
(
1
), pp.
127
148
.
28.
Deng
,
Q.
,
Liu
,
L. P.
, and
Sharma
,
P.
,
2014
, “
Electrets in Soft Materials: Nonlinearity, Size Effects, and Giant Electromechanical Coupling
,”
Phys. Rev. E
,
90
(
1
), p.
012603
.
29.
Deng
,
Q.
,
Liu
,
L. P.
, and
Sharma
,
P.
,
2014
, “
Flexoelectricity in Soft Materials and Biological Membranes
,”
J. Mech. Phys. Solids
,
62
, pp.
209
227
.
30.
Sladek
,
J.
,
Sladek
,
V.
,
Stanak
,
P.
,
Zhang
,
C. Z.
, and
Tan
,
C. L.
,
2017
, “
Fracture Mechanics Analysis of Size-Dependent Piezoelectric Solids
,”
Int. J. Solids. Struct.
,
113
, pp.
1
9
.
31.
Mao
,
S.
, and
Purohit
,
P. K.
,
2015
, “
Defects in Flexoelectric Solids
,”
J. Mech. Phys. Solids
,
84
, pp.
95
115
.
32.
Giannakopoulos
,
A. E.
, and
Zisis
,
T.
,
2021
, “
Uniformly Moving Antiplane Crack in Flexoelectric Materials
,”
Eur. J. Mech. A. Solids
,
85
, p.
104136
.
33.
Giannakopoulos
,
A. E.
, and
Zisis
,
T.
,
2021
, “
Steady-State Antiplane Crack Considering the Flexoelectrics Effect: Surface Waves and Flexoelectric Metamaterials
,”
Arch. Appl. Mech.
,
91
(
2
), pp.
713
738
.
34.
Tian
,
X. P.
,
Li
,
Q.
, and
Deng
,
Q.
,
2019
, “
The J-Integral in Flexoelectric Solids
,”
Int. J. Fract.
,
215
(
1–2
), pp.
67
76
.
35.
Yu
,
P. F.
,
Chen
,
J. Y.
,
Wang
,
H. L.
,
Liang
,
X.
, and
Shen
,
S. P.
,
2018
, “
Path-Independent Integrals in Electrochemomechanical Systems With Flexoelectricity
,”
Int. J. Solids. Struct.
,
147
, pp.
20
28
.
36.
Tian
,
X. P.
,
Xu
,
M. K.
,
Deng
,
Q.
,
Sladek
,
J.
,
Sladek
,
V.
,
Repka
,
M.
, and
Li
,
Q.
,
2020
, “
Size-Dependent Direct and Converse Flexoelectricity Around a Micro-Hole
,”
Acta Mech.
,
231
(
12
), pp.
4851
4865
.
37.
Mao
,
S.
, and
Purohit
,
P. K.
,
2014
, “
Insights Into Flexoelectric Solids From Strain-Gradient Elasticity
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081004
.
38.
Repka
,
M.
,
Sladek
,
V.
, and
Sladek
,
J.
,
2018
, “
Gradient Elasticity Theory Enrichment of Plate Bending Theories
,”
Compos. Struct.
,
202
, pp.
447
457
.
39.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.
40.
Mindlin
,
R. D.
, and
Eshel
,
N. N.
,
1968
, “
On First Strain-Gradient Theories in Linear Elasticity
,”
Int. J. Solids. Struct.
,
4
(
1
), pp.
109
124
.
41.
Sladek
,
J.
,
Sladek
,
V.
,
Wunsche
,
M.
, and
Zhang
,
C. Z.
,
2018
, “
Effects of Electric Field and Strain Gradients on Cracks in Piezoelectric Solids
,”
Eur. J. Mech. A. Solids
,
71
, pp.
187
198
.
42.
Sladek
,
J.
,
Sladek
,
V.
,
Wunsche
,
M.
, and
Kasala
,
J.
,
2018
, “
Gradient Piezoelectricity for Cracks Under an Impact Load
,”
Int. J. Fract.
,
210
(
1–2
), pp.
95
111
.
43.
Liang
,
X.
, and
Shen
,
S. P.
,
2013
, “
Size-Dependent Piezoelectricity and Elasticity Due to the Electric Field-Strain Gradient Coupling and Strain Gradient Elasticity
,”
Int. J. Appl. Mech.
,
5
(
2
), p.
1350015
.
You do not currently have access to this content.