Abstract

Cracks usually propagate dynamically that makes them so dangerous. However, most crack simulations are based on quasi-static analyses because they are simpler than the dynamic ones. Is it correct to use quasi-static analyses instead of the dynamic ones? Will the quasi-static and dynamic simulations provide similar results? We try to answer these questions in the present work. We compare results of quasi-static and dynamic simulations of crack propagation in aneurysm material. We use the material-sink (MS) approach, which is based on the notion of the diffused bond breakage. The latter feature implies a local loss of material and, consequently, decrease of mass density, which, in its turn, means that both stiffness and inertia go down in the damaged zone. The cancellation of inertia is an important feature of the MS approach in contrast to more formal regularization theories as phase field, gradient damage, and other nonlocal formulations. The MS approach is implemented within commercial finite-element software abaqus. A reduced mixed finite-element formulation is adopted to circumvent the volumetric locking and an implicit staggered solution algorithm is developed via the user-defined element subroutine UEL. Considered examples show that the onset of crack instability under static loads is followed by the dynamic rather than quasi-static crack propagation. Moreover, dynamic and quasi-static simulations, generally, provide different results.

References

1.
Griffith
,
A. A.
,
1921
, “
The Phenomena of Rupture and Flow in Solids
,”
Phil. Trans. R. Soc. Lond. Ser. A, Contain. Pap. Math. Phys. Charact.
,
221
(
582–593
), pp.
163
198
.
2.
Molnár
,
G.
,
Gravouil
,
A.
,
Seghir
,
R.
, and
Réthoré
,
J.
,
2020
, “
An Open-Source Abaqus Implementation of the Phase-Field Method to Study the Effect of Plasticity on the Instantaneous Fracture Toughness in Dynamic Crack Propagation
,”
Comput. Methods Appl. Mech. Eng.
,
365
, p.
113004
.
3.
Elishakoff
,
I.
, and
Volokh
,
K. Y.
,
2021
, “
Centenary of Two Pioneering Theories in Mechanics
,”
Math. Mech. Solids
,
26
(
12
), pp.
1896
1904
.
4.
Irwin
,
G. R.
,
1958
, “Fracture,”
Elasticity and Plasticity/Elastizität und Plastizität. Handbuch der Physik/Encyclopedia of Physics
, S. Flügge, ed.,
Springer
,
Berlin, Heidelberg
, pp.
551
590
.
5.
Bui
,
H.
,
1978
,
Mécanique De La Rupture Fragile
,
Masson
,
Paris
.
6.
Adda-Bedia
,
M.
,
Arias
,
R.
,
Ben Amar
,
M.
, and
Lund
,
F.
,
1999
, “
Generalized Griffith Criterion for Dynamic Fracture and the Stability of Crack Motion at High Velocities
,”
Phys. Rev. E
,
60
(
2
), pp.
2366
2376
.
7.
Freund
,
L.
,
1998
,
Dynamic Fracture Mechanics
,
Cambridge University Press
,
Cambridge
.
8.
Rice
,
J. R.
,
2001
,
Some Studies of Crack Dynamics
,
Springer Netherlands
,
Dordrecht
.
9.
Kanninen
,
M.
, and
Popelar
,
C.
,
1985
,
Advanced Fracture Mechanics
, 1st ed.,
Oxford University Press
,
New York
.
10.
Maigre
,
H.
, and
Rittel
,
D.
,
1993
, “
Mixed-Mode Quantification for Dynamic Fracture Initiation: Application to the Compact Compression Specimen
,”
Int. J. Solids Struct.
,
30
(
23
), pp.
3233
3244
.
11.
Zhou
,
M.
,
Rosakis
,
A.
, and
Ravichandran
,
G.
,
1996
, “
Dynamically Propagating Shear Bands in Impact-Loaded Prenotched Plates—i. Experimental Investigations of Temperature Signatures and Propagation Speed
,”
J. Mech. Phys. Solids
,
44
(
6
), pp.
981
1006
.
12.
Kalthoff
,
J. F.
,
2000
, “
Modes of Dynamic Shear Failure in Solids
,”
Int. J. Fracture
,
101
(
1
), pp.
1
31
.
13.
Wunderlich
,
W.
, and
Awaji
,
H.
,
2001
, “
Molecular Dynamics – Simulations of the Fracture Toughness of Sapphire
,”
Mater. Des.
,
22
(
1
), pp.
53
59
.
14.
Zhou
,
S. J.
,
Lomdahl
,
P. S.
,
Thomson
,
R.
, and
Holian
,
B. L.
,
1996
, “
Dynamic Crack Processes Via Molecular Dynamics
,”
Phys. Rev. Lett.
,
76
(
13
), pp.
2318
2321
.
15.
Rountree
,
C. L.
,
Kalia
,
R. K.
,
Lidorikis
,
E.
,
Nakano
,
A.
,
Van Brutzel
,
L.
, and
Vashishta
,
P.
,
2002
, “
Atomistic Aspects of Crack Propagation in Brittle Materials: Multimillion Atom Molecular Dynamics Simulations
,”
Annu. Rev. Mater. Res.
,
32
(
1
), pp.
377
400
.
16.
Barenblatt
,
G. I.
,
1959
, “
The Formation of Equilibrium Cracks During Brittle Fracture. General Ideas and Hypotheses. Axially-Symmetric Cracks
,”
J. Appl. Math. Mech.
,
23
(
3
), pp.
622
636
.
17.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. Appl. Mech.
,
54
(
3
), pp.
525
531
.
18.
Rice
,
J. R.
, and
Wang
,
J. -S.
,
1989
, “
Embrittlement of Interfaces by Solute Segregation
,”
Mater. Sci. Eng. A
,
107
, pp.
23
40
.
19.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1992
, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic–Plastic Solids
,”
J. Mech. Phys. Solids.
,
40
(
6
), pp.
1377
1397
.
20.
Camacho
,
G. T.
, and
Ortiz
,
M.
,
1996
, “
Computational Modelling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
,
33
(
20
), pp.
2899
2938
.
21.
Borst
,
R. d.
,
2001
, “
Some Recent Issues in Computational Failure Mechanics
,”
Int. J. Numer. Methods Eng.
,
52
(
1–2
), pp.
63
95
.
22.
Xu
,
X. P.
, and
Needleman
,
A.
,
1994
, “
Numerical Simulations of Fast Crack Growth in Brittle Solids
,”
J. Mech. Phys. Solids
,
42
(
9
), pp.
1397
1434
.
23.
Moes
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
,
1999
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
46
(
1
), pp.
131
150
.
24.
Zhou
,
F.
, and
Molinari
,
J. F.
,
2004
, “
Dynamic Crack Propagation With Cohesive Elements: A Methodology to Address Mesh Dependency
,”
Int. J. Numer. Methods Eng.
,
59
(
1
), pp.
1
24
.
25.
Azevedo
,
N. M.
, and
Lemos
,
J.
,
2006
, “
Hybrid Discrete Element/Finite Element Method for Fracture Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
33
), pp.
4579
4593
.
26.
Park
,
K.
,
Paulino
,
G. H.
, and
Roesler
,
J. R.
,
2009
, “
A Unified Potential-Based Cohesive Model of Mixed-Mode Fracture
,”
J. Mech. Phys. Solids
,
57
(
6
), pp.
891
908
.
27.
Peng
,
G. L.
, and
Wang
,
Y. H.
,
2012
, “
A Node Split Method for Crack Growth Problem
,”
Appl. Mech. Mater.
,
182–183
, pp.
1524
1528
.
28.
Gong
,
B.
,
Paggi
,
M.
, and
Carpinteri
,
A.
,
2012
, “
A Cohesive Crack Model Coupled With Damage for Interface Fatigue Problems
,”
Int. J. Fracture
,
173
(
2
), pp.
91
104
.
29.
Moes
,
N.
,
Gravouil
,
A.
, and
Belytschko
,
T.
,
2002
, “
Non-Planar 3D Crack Growth by the Extended Finite Element and Level Sets—Part I: Mechanical Model
,”
Int. J. Numer. Methods Eng.
,
53
(
11
), pp.
2549
2568
.
30.
Msekh
,
M. A.
,
Sargado
,
J. M.
,
Jamshidian
,
M.
,
Areias
,
P. M.
, and
Rabczuk
,
T.
,
2015
, “
Abaqus Implementation of Phase-Field Model for Brittle Fracture
,”
Comput. Mater. Sci.
,
96
, pp.
472
484
.
31.
Bui
,
T. Q.
, and
Tran
,
H. T.
,
2021
, “
A Localized Mass-Field Damage Model With Energy Decomposition: Formulation and Fe Implementation
,”
Comput. Methods Appl. Mech. Eng.
,
387
, p.
114134
.
32.
Kachanov
,
L. M.
,
1958
, “
Time of the Rupture Process Under Creep Conditions
,”
Izv Akad Nauk SSSR, Otdelenie Teckhnicheskikh Nauk
,
8
, pp.
26
31
.
33.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.
34.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
,
1992
, “
A Plasticity-Damage Theory for Large Deformation of Solids–I. Theoretical Formulation
,”
Int. J. Eng. Sci.
,
30
(
9
), pp.
1089
1108
.
35.
Gao
,
H.
, and
Klein
,
P.
,
1998
, “
Numerical Simulation of Crack Growth in an Isotropic Solid With Randomized Internal Cohesive Bonds
,”
J. Mech. Phys. Solids
,
46
(
2
), pp.
187
218
.
36.
Klein
,
P.
, and
Gao
,
H.
,
1998
, “
Crack Nucleation and Growth As Strain Localization in a Virtual-Bond Continuum
,”
Eng. Fract. Mech.
,
61
(
1
), pp.
21
48
.
37.
Lemaitre
,
J.
, and
Desmorat
,
R.
,
2005
,
Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures
,
Springer
,
Berlin/Heidelberg
.
38.
Volokh
,
K. Y.
,
2004
, “
Nonlinear Elasticity for Modeling Fracture of Isotropic Brittle Solids
,”
ASME J. Appl. Mech.
,
71
(
1
), pp.
141
143
.
39.
Benzerga
,
A. A.
,
Leblond
,
J. -B.
,
Needleman
,
A.
, and
Tvergaard
,
V.
,
2016
, “
Ductile Failure Modeling
,”
Int. J. Fracture
,
201
(
1
), pp.
29
80
.
40.
Pijaudier-Cabot
,
G.
, and
Bažant
,
Z. P.
,
1987
, “
Nonlocal Damage Theory
,”
J. Eng. Mech.
,
113
(
10
), pp.
1512
1533
.
41.
Lasry
,
D.
, and
Belytschko
,
T.
,
1988
, “
Localization Limiters in Transient Problems
,”
Int. J. Solids Struct.
,
24
(
6
), pp.
581
597
.
42.
Peerlings
,
R. H. J.
,
de Borst
,
R.
,
Brekelmans
,
W. A. M.
, and
de Vree
,
J. H. P.
,
1996
, “
Gradient Enhanced Damage for Quasi-Brittle Materials
,”
Int. J. Numer. Methods Eng.
,
39
(
19
), pp.
3391
3403
.
43.
de Borst
,
R.
, and
van der Giessen
,
E.
,
1998
,
Material Instabilities in Solids
,
Wiley
,
Chichester
.
44.
Silling
,
S. A.
,
2000
, “
Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
175
209
.
45.
Francfort
,
G. A.
, and
Marigo
,
J. J.
,
1998
, “
Revisiting Brittle Fracture As an Energy Minimization Problem
,”
J. Mech. Phys. Solids
,
46
(
8
), pp.
1319
1342
.
46.
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Marigo
,
J.-J.
,
2000
, “
Numerical Experiments in Revisited Brittle Fracture
,”
J. Mech. Phys. Solids.
,
48
(
4
), pp.
797
826
.
47.
Miehe
,
C.
,
Hofacker
,
M.
, and
Welschinger
,
F.
,
2010
, “
A Phase Field Model for Rate-Independent Crack Propagation: Robust Algorithmic Implementation Based on Operator Splits
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
45
), pp.
2765
2778
.
48.
Miehe
,
C.
,
Welschinger
,
F.
, and
Hofacker
,
M.
,
2010
, “
Thermodynamically Consistent Phase-Field Models of Fracture: Variational Principles and Multi-field Fe Implementations
,”
Int. J. Numer. Methods Eng.
,
83
(
10
), pp.
1273
1311
.
49.
Hofacker
,
M.
, and
Miehe
,
C.
,
2012
, “
A Phase Field Model of Dynamic Fracture: Robust Field Updates for the Analysis of Complex Crack Patterns
,”
Int. J. Numer. Methods Eng.
,
93
(
3
), pp.
276
301
.
50.
Hofacker
,
M.
, and
Miehe
,
C.
,
2012
, “
Continuum Phase Field Modeling of Dynamic Fracture: Variational Principles and Staggered Fe Implementation
,”
Int. J. Fracture
,
178
(
1
), pp.
113
129
.
51.
Borden
,
M. J.
,
Verhoosel
,
C. V.
,
Scott
,
M. A.
,
Hughes
,
T. J. R.
, and
Landis
,
C. M.
,
2012
, “
A Phase-Field Description of Dynamic Brittle Fracture
,”
Comput. Methods Appl. Mech. Eng.
,
217–220
, pp.
77
95
.
52.
Liu
,
G.
,
Li
,
Q.
,
Msekh
,
M. A.
, and
Zuo
,
Z.
,
2016
, “
Abaqus Implementation of Monolithic and Staggered Schemes for Quasi-Static and Dynamic Fracture Phase-Field Model
,”
Comput. Mater. Sci.
,
121
, pp.
35
47
.
53.
Miehe
,
C.
, and
Schänzel
,
L.-M.
,
2014
, “
Phase Field Modeling of Fracture in Rubbery Polymers. Part I: Finite Elasticity Coupled With Brittle Failure
,”
J. Mech. Phys. Solids
,
65
, pp.
93
113
.
54.
Raina
,
A.
, and
Miehe
,
C.
,
2016
, “
A Phase-Field Model for Fracture in Biological Tissues
,”
Biomech. Model. Mechanobiol.
,
15
(
3
), pp.
479
496
.
55.
Miehe
,
C.
,
Aldakheel
,
F.
, and
Raina
,
A.
,
2016
, “
Phase Field Modeling of Ductile Fracture at Finite Strains: A Variational Gradient-Extended Plasticity-Damage Theory
,”
Int. J. Plast.
,
84
, pp.
1
32
.
56.
Wu
,
J.-Y.
, and
Huang
,
Y.
,
2020
, “
Comprehensive Implementations of Phase-Field Damage Models in Abaqus
,”
Theor. Appl. Fract. Mech.
,
106
, p.
102440
.
57.
Russ
,
J.
,
Slesarenko
,
V.
,
Rudykh
,
S.
, and
Waisman
,
H.
,
2020
, “
Rupture of 3D-Printed Hyperelastic Composites: Experiments and Phase Field Fracture Modeling
,”
J. Mech. Phys. Solids
,
140
, p.
103941
.
58.
Volokh
,
K. Y.
,
2017
, “
Fracture As a Material Sink
,”
Mater. Theory
,
1
(
1
), p.
3
.
59.
Volokh
,
K. Y.
,
2007
, “
Hyperelasticity With Softening for Modeling Materials Failure
,”
J. Mech. Phys. Solids
,
55
(
10
), pp.
2237
2264
.
60.
Volokh
,
K. Y.
,
2010
, “
On Modeling Failure of Rubber-Like Materials
,”
Mech. Res. Commun.
,
37
(
8
), pp.
684
689
.
61.
Volokh
,
K. Y.
,
2011
, “
Characteristic Length of Damage Localization in Rubber
,”
Int. J. Fracture
,
168
(
1
), pp.
113
116
.
62.
Volokh
,
K. Y.
,
2013
, “
Review of the Energy Limiters Approach to Modeling Failure of Rubber
,”
Rubber Chem. Technol.
,
86
(
3
), pp.
470
487
.
63.
Volokh
,
K. Y.
,
2013
, “
Characteristic Length of Damage Localization in Concrete
,”
Mech. Res. Commun.
,
51
, pp.
29
31
.
64.
Volokh
,
K. Y.
,
2019
,
Mechanics of Soft Materials
, 2nd ed.,
Springer
,
Singapore
.
65.
Abu-Qbeitah
,
S.
,
Jabareen
,
M.
, and
Volokh
,
K.
,
2022
, “
Quasi-Static Crack Propagation in Soft Materials Using the Material-Sink Theory
,” submitted.
66.
Lorentz
,
E.
, and
Benallal
,
A.
,
2005
, “
Gradient Constitutive Relations: Numerical Aspects and Application to Gradient Damage
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
50
), pp.
5191
5220
.
67.
Chaboche
,
J. L.
,
Feyel
,
F.
, and
Monerie
,
Y.
,
2001
, “
Interface Debonding Models: A Viscous Regularization With a Limited Rate Dependency
,”
Int. J. Solids Struct.
,
38
(
18
), pp.
3127
3160
.
68.
Wick
,
T.
,
2017
, “
Modified Newton Methods for Solving Fully Monolithic Phase-Field Quasi-Static Brittle Fracture Propagation
,”
Comput. Methods Appl. Mech. Eng.
,
325
, pp.
577
611
.
69.
Bishara
,
D.
, and
Jabareen
,
M.
,
2018
, “
A Reduced Mixed Finite-Element Formulation for Modeling the Viscoelastic Response of Electro-Active Polymers at Finite Deformation
,”
Math. Mech. Solids
,
24
(
5
), pp.
1578
1610
.
70.
Jabareen
,
M.
,
2020
, “
A Polygonal Finite Element Formulation for Modeling Nearly Incompressible Materials
,”
Meccanica
,
55
(
4
), pp.
701
723
.
71.
Hilber
,
H.
,
Hughes
,
T.
, and
Taylor
,
R.
,
1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
(
3
), pp.
283
292
.
72.
Smith
,
M.
,
2020
,
ABAQUS/Standard Documentation, Version 2020
,
Johnston, RI
.
73.
Roth
,
S.
,
Hütter
,
G.
,
Mühlich
,
U.
,
Nassauer
,
B.
,
Zybell
,
L.
, and
Kuna
,
M.
,
2012
, “
Visualisation of User Defined Finite Elements With Abaqus/Viewer
,”
Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg
.
74.
Faye
,
A.
,
Lev
,
Y.
, and
Volokh
,
K. Y.
,
2019
, “
The Effect of Local Inertia Around the Crack-Tip in Dynamic Fracture of Soft Materials
,”
Mech. Soft Mater.
,
1
(
1
), pp.
4
.
75.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
,
33
(
4
), pp.
475
482
.
76.
Gerasimov
,
T.
, and
Lorenzis
,
L. D.
,
2016
, “
A Line Search Assisted Monolithic Approach for Phase-Field Computing of Brittle Fracture
,”
Comput. Methods Appl. Mech. Eng.
,
312
, pp.
276
303
.
You do not currently have access to this content.