Abstract
The dynamic modeling of multibody system is crucial in motion simulations, design, and control of mechanisms. This paper proposes a Hamiltonian formulation on manifolds for mechanism modeling which involves three key steps: (1) the local parameterization of regular configuration space; (2) the coordinate formulation of the Legendre transformation; and (3) the derivation of Hamiltonian equations. Geometric numerical integrators can be naturally deployed on the proposed formulation and achieve a long-time energy-preserving integration. Based on parametric symplectic integrators and the chart-splicing technique, a novel energy-preserving scheme is proposed. Simulations on two constrained mechanisms verify our claims.
Issue Section:
Research Papers
References
1.
Arnold
, V. I.
, 1989
, Mathematical Methods of Classical Mechanics
, 2nd ed., Springer
, New York
.2.
Marsden
, J.
, and Ratiu
, T.
, 1999
, Introduction to Mechanics and Symmetry
, 2nd ed., Springer-Verlag
, New York
.3.
Hairer
, E.
, Lubich
, C.
, and Wanner
, G.
, 2006
, Geometric Numerical Integration
, Springer
, Berlin/Heidelberg
, pp. 187
–203
.4.
Goldstein
, H.
, Poole
, C.
, and Safko
, J.
, 2002
, Classical Mechanics
, 3rd ed., Addison-Wesley
, San Francisco, CA
.5.
Udwadia
, F. E.
, 2016
, “Constrained Motion of Hamiltonian Systems
,” Nonlinear Dyn.
, 84
(3
), pp. 1135
–1145
. 6.
Petzold
, L.
, 1982
, “Differential/Algebraic Equations Are Not ODE’s
,” SIAM J. Sci. Statist. Comput.
, 3
(3
), pp. 367
–384
. 7.
Sideris
, T. C.
, 2013
, Ordinary Differential Equations and Dynamical Systems
, Atlantis Press
, Paris
.8.
Maggi
, G. A.
, 1901
, “Di Alcune Nuove Forme della Equazioni della Dinamica Applicabile ai Sistemi Anolonomi
,” Rendiconti della Regia Academia dei Lincei
, X
(2
), pp. 287
–291
.9.
Tseng
, F. C.
, Ma
, Z. D.
, and Hulbert
, G. M.
, 2003
, “Efficient Numerical Solution of Constrained Multibody Dynamics Systems
,” Comput. Methods Appl. Mech. Eng.
, 192
(3
), pp. 439
–472
. 10.
Bauchau
, O. A.
, and Laulusa
, A.
, 2007
, “Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems
,” ASME J. Comput. Nonlinear Dyn.
, 3
(1
), p. 011005
. 11.
Amirouche
, F. M. L.
, Jia
, T.
, and Ider
, S. K.
, 1988
, “A Recursive Householder Transformation for Complex Dynamical Systems With Constraints
,” ASME J. Appl. Mech.
, 55
(3
), pp. 729
–734
. 12.
Agrawal
, O.
, and Saigal
, S.
, 1989
, “Dynamic Analysis of Multi-body Systems Using Tangent Coordinates
,” Comput. Struct.
, 31
(3
), pp. 349
–355
. 13.
Udwadia
, F. E.
, Kalaba
, R.
, and Eun
, H.
, 1997
, “Equations of Motion for Constrained Mechanical Systems and the Extended D’Alembert’s Principle
,” Quart. Appl. Math.
, 55
(2
), pp. 321
–331
. 14.
Borri
, M.
, Bottasso
, C.
, and Mantegazza
, P.
, 1992
, “Acceleration Projection Method in Multibody Dynamics
,” Eur. J. Mech. A/Solids
, 11
(3
), pp. 403
–418
.15.
Haug
, E. J.
, 2018
, “Extension of Maggi and Kane Equations to Holonomic Dynamic Systems
,” ASME J. Comput. Nonlinear Dyn.
, 13
(12
), p. 121003
. 16.
Haug
, E. J.
, 2021
, “Multibody Dynamics on Differentiable Manifolds
,” ASME J. Comput. Nonlinear Dyn.
, 16
(4
), p. 041003
. 17.
Celledoni
, E.
, Çokaj
, E.
, Leone
, A.
, Murari
, D.
, and Owren
, B.
, 2022
, “Lie Group Integrators for Mechanical Systems
,” Int. J. Comput. Math.
, 99
(1
), pp. 58
–88
. 18.
Bogfjellmo
, G.
, and Marthinsen
, H.
, 2016
, “High-Order Symplectic Partitioned Lie Group Methods
,” Found. Comput. Math.
, 16
(2
), pp. 49
–530
. 19.
20.
Wehage
, R. A.
, and Haug
, E. J.
, 1982
, “Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems
,” ASME J. Mech. Des.
, 104
(1
), pp. 247
–255
. 21.
Giaquinta
, M.
, and Modica
, G.
, 2010
, Mathematical Analysis: An Introduction to Functions of Several Variables
, Springer Science & Business Media
, New York
.22.
Kress
, R.
, 1998
, Numerical Analysis
, Springer
, New York
, pp. 225
–256
.23.
Strang
, G.
, 1980
, Liner Algebra and Its Applications
, 2nd ed., Academic Press
, New York
.24.
Moler
, C.
, 2004
, Numerical Computing With MATLAB
, Society for Industrial Mathematics
, Philadelphia, PA
, pp. 212
–219
.25.
Brugnano
, L.
, Iavernaro
, F.
, and TRIGIANTE
, D.
, 2012
, “Energy- and Quadratic Invariants-Preserving Integrators Based Upon Gauss Collocation Formulae
,” SIAM J. Numer. Anal.
, 50
(01
), pp. 2897
–2916
. 26.
Brugnano
, L.
, Gurioli
, G.
, and Iavernaro
, F.
, 2018
, “Analysis of Energy and Quadratic Invariant Preserving (EQUIP) Methods
,” J. Comput. Appl. Math.
, 335
(06
), pp. 51
–73
. 27.
Broyden
, C.
, 1965
, “A Class of Methods for Solving Nonlinear Simultaneous Equations
,” Math. Comput.
, 19
(01
), pp. 577
–593
. 28.
Shen
, X.
, and Leok
, M.
, 2017
, “Lie Group Variational Integrators for Rigid Body Problems Using Quaternions
,” ArXiv e-prints.29.
Haug
, E. J.
, 2021
, Computer Aided Kinematics and Dynamics of Mechanical Systems
, 2nd ed., Vol. II
, Research Gate
, Berlin
.Copyright © 2022 by ASME
You do not currently have access to this content.