Abstract

The dynamic modeling of multibody system is crucial in motion simulations, design, and control of mechanisms. This paper proposes a Hamiltonian formulation on manifolds for mechanism modeling which involves three key steps: (1) the local parameterization of regular configuration space; (2) the coordinate formulation of the Legendre transformation; and (3) the derivation of Hamiltonian equations. Geometric numerical integrators can be naturally deployed on the proposed formulation and achieve a long-time energy-preserving integration. Based on parametric symplectic integrators and the chart-splicing technique, a novel energy-preserving scheme is proposed. Simulations on two constrained mechanisms verify our claims.

References

1.
Arnold
,
V. I.
,
1989
,
Mathematical Methods of Classical Mechanics
, 2nd ed.,
Springer
,
New York
.
2.
Marsden
,
J.
, and
Ratiu
,
T.
,
1999
,
Introduction to Mechanics and Symmetry
, 2nd ed.,
Springer-Verlag
,
New York
.
3.
Hairer
,
E.
,
Lubich
,
C.
, and
Wanner
,
G.
,
2006
,
Geometric Numerical Integration
,
Springer
,
Berlin/Heidelberg
, pp.
187
203
.
4.
Goldstein
,
H.
,
Poole
,
C.
, and
Safko
,
J.
,
2002
,
Classical Mechanics
, 3rd ed.,
Addison-Wesley
,
San Francisco, CA
.
5.
Udwadia
,
F. E.
,
2016
, “
Constrained Motion of Hamiltonian Systems
,”
Nonlinear Dyn.
,
84
(
3
), pp.
1135
1145
.
6.
Petzold
,
L.
,
1982
, “
Differential/Algebraic Equations Are Not ODE’s
,”
SIAM J. Sci. Statist. Comput.
,
3
(
3
), pp.
367
384
.
7.
Sideris
,
T. C.
,
2013
,
Ordinary Differential Equations and Dynamical Systems
,
Atlantis Press
,
Paris
.
8.
Maggi
,
G. A.
,
1901
, “
Di Alcune Nuove Forme della Equazioni della Dinamica Applicabile ai Sistemi Anolonomi
,”
Rendiconti della Regia Academia dei Lincei
,
X
(
2
), pp.
287
291
.
9.
Tseng
,
F. C.
,
Ma
,
Z. D.
, and
Hulbert
,
G. M.
,
2003
, “
Efficient Numerical Solution of Constrained Multibody Dynamics Systems
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
3
), pp.
439
472
.
10.
Bauchau
,
O. A.
, and
Laulusa
,
A.
,
2007
, “
Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011005
.
11.
Amirouche
,
F. M. L.
,
Jia
,
T.
, and
Ider
,
S. K.
,
1988
, “
A Recursive Householder Transformation for Complex Dynamical Systems With Constraints
,”
ASME J. Appl. Mech.
,
55
(
3
), pp.
729
734
.
12.
Agrawal
,
O.
, and
Saigal
,
S.
,
1989
, “
Dynamic Analysis of Multi-body Systems Using Tangent Coordinates
,”
Comput. Struct.
,
31
(
3
), pp.
349
355
.
13.
Udwadia
,
F. E.
,
Kalaba
,
R.
, and
Eun
,
H.
,
1997
, “
Equations of Motion for Constrained Mechanical Systems and the Extended D’Alembert’s Principle
,”
Quart. Appl. Math.
,
55
(
2
), pp.
321
331
.
14.
Borri
,
M.
,
Bottasso
,
C.
, and
Mantegazza
,
P.
,
1992
, “
Acceleration Projection Method in Multibody Dynamics
,”
Eur. J. Mech. A/Solids
,
11
(
3
), pp.
403
418
.
15.
Haug
,
E. J.
,
2018
, “
Extension of Maggi and Kane Equations to Holonomic Dynamic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
12
), p.
121003
.
16.
Haug
,
E. J.
,
2021
, “
Multibody Dynamics on Differentiable Manifolds
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
4
), p.
041003
.
17.
Celledoni
,
E.
,
Çokaj
,
E.
,
Leone
,
A.
,
Murari
,
D.
, and
Owren
,
B.
,
2022
, “
Lie Group Integrators for Mechanical Systems
,”
Int. J. Comput. Math.
,
99
(
1
), pp.
58
88
.
18.
Bogfjellmo
,
G.
, and
Marthinsen
,
H.
,
2016
, “
High-Order Symplectic Partitioned Lie Group Methods
,”
Found. Comput. Math.
,
16
(
2
), pp.
49
530
.
19.
Lee
,
J. M.
,
2003
,
Smooth Manifolds
,
Springer
,
New York
, pp.
1
29
.
20.
Wehage
,
R. A.
, and
Haug
,
E. J.
,
1982
, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems
,”
ASME J. Mech. Des.
,
104
(
1
), pp.
247
255
.
21.
Giaquinta
,
M.
, and
Modica
,
G.
,
2010
,
Mathematical Analysis: An Introduction to Functions of Several Variables
,
Springer Science & Business Media
,
New York
.
22.
Kress
,
R.
,
1998
,
Numerical Analysis
,
Springer
,
New York
, pp.
225
256
.
23.
Strang
,
G.
,
1980
,
Liner Algebra and Its Applications
, 2nd ed.,
Academic Press
,
New York
.
24.
Moler
,
C.
,
2004
,
Numerical Computing With MATLAB
,
Society for Industrial Mathematics
,
Philadelphia, PA
, pp.
212
219
.
25.
Brugnano
,
L.
,
Iavernaro
,
F.
, and
TRIGIANTE
,
D.
,
2012
, “
Energy- and Quadratic Invariants-Preserving Integrators Based Upon Gauss Collocation Formulae
,”
SIAM J. Numer. Anal.
,
50
(
01
), pp.
2897
2916
.
26.
Brugnano
,
L.
,
Gurioli
,
G.
, and
Iavernaro
,
F.
,
2018
, “
Analysis of Energy and Quadratic Invariant Preserving (EQUIP) Methods
,”
J. Comput. Appl. Math.
,
335
(
06
), pp.
51
73
.
27.
Broyden
,
C.
,
1965
, “
A Class of Methods for Solving Nonlinear Simultaneous Equations
,”
Math. Comput.
,
19
(
01
), pp.
577
593
.
28.
Shen
,
X.
, and
Leok
,
M.
,
2017
, “
Lie Group Variational Integrators for Rigid Body Problems Using Quaternions
,” ArXiv e-prints.
29.
Haug
,
E. J.
,
2021
,
Computer Aided Kinematics and Dynamics of Mechanical Systems
, 2nd ed., Vol.
II
,
Research Gate
,
Berlin
.
You do not currently have access to this content.