Abstract

Motivated by the observations of snap-through phenomena in pre-stressed strips and curved shells, we numerically investigate the snapping of a pre-buckled hemispherical gridshell under apex load indentation. Our experimentally validated numerical framework on elastic gridshell simulation combines two components: (i) discrete elastic rods method, for the geometrically nonlinear description of one-dimensional rods, and (ii) a naive penalty-based energy functional, to perform the non-deviation condition between two rods at joint. An initially planar grid of slender rods can be actuated into a three-dimensional hemispherical shape by loading its extremities through a prescribed path, known as buckling-induced assembly; next, this pre-buckled structure can suddenly change its bending direction at some threshold points when compressing its apex to the other side. We find that the hemispherical gridshell can undergo snap-through buckling through two different paths based on two different apex loading conditions. The structural rigidity increases as the number of rods in the gridshell structure becomes denser, which emphasizes the mechanically nonlocal property in hollow grids, in contrast to the local response of continuum shells. The findings may bridge the gap among rods, grids, knits, and shells, for a fundamental understanding of a group of thin elastic structures, and inspire the design of novel micro-electro-mechanical systems and functional metamaterials.

References

1.
Ghiyasinasab
,
M.
,
Lehoux
,
N.
, and
Ménard
,
S.
,
2017
, “
Production Phases and Market for Timber Gridshell Structures: A State-of-the-Art Review
,”
BioResources
,
12
(
4
), pp.
9538
9555
.
2.
Quagliaroli
,
M.
, and
Malerba
,
P.
,
2013
, “
Flexible Bridge Decks Suspended by Cable Nets. A Constrained Form Finding Approach
,”
Int. J. Solids Struct.
,
50
(
14–15
), pp.
2340
2352
.
3.
Tayeb
,
F.
,
Caron
,
J.-F.
,
Baverel
,
O.
, and
Du Peloux
,
L.
,
2013
, “
Stability and Robustness of a 300 M2 Composite Gridshell Structure
,”
Constr. Build. Mater.
,
49
, pp.
926
938
.
4.
Lefevre
,
B.
,
Douthe
,
C.
, and
Baverel
,
O.
,
2015
, “
Buckling of Elastic Gridshells
,”
J. Int. Assoc. Shell Spatial Struct.
,
56
(
3
), pp.
153
171
.
5.
Li
,
Y.
,
Song
,
J.
,
Fang
,
B.
, and
Zhang
,
J.
,
2011
, “
Surface Effects on the Postbuckling of Nanowires
,”
J. Phys. D: Appl. Phys.
,
44
(
42
), p.
425304
.
6.
Xu
,
S.
,
Yan
,
Z.
,
Jang
,
K.-I.
,
Huang
,
W.
,
Fu
,
H.
,
Kim
,
J.
,
Wei
,
Z.
, et al
,
2015
, “
Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling
,”
Science
,
347
(
6218
), pp.
154
159
.
7.
Zhao
,
H.
,
Li
,
K.
,
Han
,
M.
,
Zhu
,
F.
,
Vázquez-Guardado
,
A.
,
Guo
,
P.
,
Xie
,
Z.
, et al
,
2019
, “
Buckling and Twisting of Advanced Materials Into Morphable 3D Mesostructures
,”
Proc. Natl. Acad. Sci. U.S.A.
,
116
(
27
), pp.
13239
13248
.
8.
Fan
,
J. A.
,
Yeo
,
W.-H.
,
Su
,
Y.
,
Hattori
,
Y.
,
Lee
,
W.
,
Jung
,
S. -Y.
,
Zhang
,
Y.
, et al
,
2014
, “
Fractal Design Concepts for Stretchable Electronics
,”
Nat. Commun.
,
5
, p.
3266
.
9.
Jang
,
K.-I.
,
Li
,
K.
,
Chung
,
H. U.
,
Xu
,
S.
,
Jung
,
H. N.
,
Yang
,
Y.
,
Kwak
,
J. W.
, et al
,
2017
, “
Self-Assembled Three Dimensional Network Designs for Soft Electronics
,”
Nat. Commun.
,
8
, p.
15894
.
10.
Jang
,
K.-I.
,
Chung
,
H. U.
,
Xu
,
S.
,
Lee
,
C. H.
,
Luan
,
H.
,
Jeong
,
J.
,
Cheng
,
H.
, et al
,
2015
, “
Soft Network Composite Materials With Deterministic and Bio-Inspired Designs
,”
Nat. Commun.
,
6
, p.
6566
.
11.
Xu
,
Z.
,
Fan
,
Z.
,
Fu
,
H.
,
Liu
,
Y.
,
Zi
,
Y.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2019
, “
Optimization-Based Approach for the Inverse Design of Ribbon-Shaped Three-Dimensional Structures Assembled Through Compressive Buckling
,”
Phys. Rev. Appl.
,
11
(
5
), p.
054053
.
12.
Reis
,
P. M.
,
Jiménez
,
F. L.
, and
Marthelot
,
J.
,
2015
, “
Transforming Architectures Inspired by Origami
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
40
), pp.
12234
12235
.
13.
Baek
,
C.
,
Sageman-Furnas
,
A. O.
,
Jawed
,
M. K.
, and
Reis
,
P. M.
,
2018
, “
Form Finding in Elastic Gridshells
,”
Proc. Natl. Acad. Sci. U.S.A.
,
115
(
1
), pp.
75
80
.
14.
Baek
,
C.
, and
Reis
,
P. M.
,
2019
, “
Rigidity of Hemispherical Elastic Gridshells Under Point Load Indentation
,”
J. Mech. Phys. Solids
,
124
, pp.
411
426
.
15.
Miller
,
J.
,
Su
,
T.
,
Dussan V
,
E. B.
,
Pabon
,
J.
,
Wicks
,
N.
,
Bertoldi
,
K.
, and
Reis
,
P.
,
2015
, “
Buckling-Induced Lock-Up of a Slender Rod Injected Into a Horizontal Cylinder
,”
Int. J. Solids Struct.
,
72
, pp.
153
164
.
16.
Filipov
,
E. T.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2015
, “
Origami Tubes Assembled Into Stiff, Yet Reconfigurable Structures and Metamaterials
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
40
), pp.
12321
12326
.
17.
Pandey
,
A.
,
Moulton
,
D. E.
,
Vella
,
D.
, and
Holmes
,
D. P.
,
2014
, “
Dynamics of Snapping Beams and Jumping Poppers
,”
Europhys. Lett.
,
105
(
2
), p.
24001
.
18.
Chen
,
T.
,
Bilal
,
O. R.
,
Shea
,
K.
, and
Daraio
,
C.
,
2018
, “
Harnessing Bistability for Directional Propulsion of Soft, Untethered Robots
,”
Proc. Natl. Acad. Sci. U.S.A.
,
115
(
22
), pp.
5698
5702
.
19.
Forterre
,
Y.
,
Skotheim
,
J. M.
,
Dumais
,
J.
, and
Mahadevan
,
L.
,
2005
, “
How the Venus Flytrap Snaps
,”
Nature
,
433
(
7024
), p.
421
.
20.
Kebadze
,
E.
,
Guest
,
S.
, and
Pellegrino
,
S.
,
2004
, “
Bistable Prestressed Shell Structures
,”
Int. J. Solids Struct.
,
41
(
11–12
), pp.
2801
2820
.
21.
Gomez
,
M.
,
Moulton
,
D. E.
, and
Vella
,
D.
,
2017
, “
Critical Slowing Down in Purely Elastic ‘Snap-Through’ Instabilities
,”
Nat. Phys.
,
13
(
2
), p.
142
.
22.
Sano
,
T. G.
, and
Wada
,
H.
,
2018
, “
Snap-Buckling in Asymmetrically Constrained Elastic Strips
,”
Phys. Rev. E
,
97
(
1
), p.
013002
.
23.
Starostin
,
E.
, and
van der Heijden
,
G.
,
2008
, “
Tension-Induced Multistability in Inextensible Helical Ribbons
,”
Phys. Rev. Lett.
,
101
(
8
), p.
084301
.
24.
Morigaki
,
Y.
,
Wada
,
H.
, and
Tanaka
,
Y.
,
2016
, “
Stretching an Elastic Loop: Crease, Helicoid, and Pop Out
,”
Phys. Rev. Lett.
,
117
(
19
), p.
198003
.
25.
Sano
,
T. G.
, and
Wada
,
H.
,
2019
, “
Twist-Induced Snapping in a Bent Elastic Rod and Ribbon
,”
Phys. Rev. Lett.
,
122
(
11
), p.
114301
.
26.
Yu
,
T.
, and
Hanna
,
J.
,
2019
, “
Bifurcations of Buckled, Clamped Anisotropic Rods and Thin Bands Under Lateral End Translations
,”
J. Mech. Phys. Solids
,
122
, pp.
657
685
.
27.
Zhang
,
Y.
,
Jiao
,
Y.
,
Wu
,
J.
,
Ma
,
Y.
, and
Feng
,
X.
,
2020
, “
Configurations Evolution of a Buckled Ribbon in Response to Out-of-Plane Loading
,”
Extreme Mech. Lett.
,
34
, p.
100604
.
28.
Wan
,
G.
,
Liu
,
Y.
,
Xu
,
Z.
,
Jin
,
C.
,
Dong
,
L.
,
Han
,
X.
,
Zhang
,
J. X.
, and
Chen
,
Z.
,
2020
, “
Tunable Bistability of a Clamped Elastic Beam
,”
Extreme Mech. Lett.
,
34
, p.
100603
.
29.
Malek
,
S.
,
Wierzbicki
,
T.
, and
Ochsendorf
,
J.
,
2014
, “
Buckling of Spherical Cap Gridshells: A Numerical and Analytical Study Revisiting the Concept of the Equivalent Continuum
,”
Eng. Struct.
,
75
, pp.
288
298
.
30.
Yu
,
T.
,
Dreier
,
L.
,
Marmo
,
F.
,
Gabriele
,
S.
,
Parascho
,
S.
, and
Adriaenssens
,
S.
,
2021
, “
Numerical Modeling of Static Equilibria and Bifurcations in Bigons and Bigon Rings
,”
J. Mech. Phys. Solids
,
152
, p.
104459
.
31.
Bende
,
N. P.
,
Evans
,
A. A.
,
Innes-Gold
,
S.
,
Marin
,
L. A.
,
Cohen
,
I.
,
Hayward
,
R. C.
, and
Santangelo
,
C. D.
,
2015
, “
Geometrically Controlled Snapping Transitions in Shells With Curved Creases
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
36
), pp.
11175
11180
.
32.
Pezzulla
,
M.
,
Stoop
,
N.
,
Jiang
,
X.
, and
Holmes
,
D. P.
,
2017
, “
Curvature-Driven Morphing of Non-Euclidean Shells
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
473
(
2201
), p.
20170087
.
33.
Jiang
,
X.
,
Pezzulla
,
M.
,
Shao
,
H.
,
Ghosh
,
T. K.
, and
Holmes
,
D. P.
,
2018
, “
Snapping of Bistable, Prestressed Cylindrical Shells
,”
Europhys. Lett.
,
122
(
6
), p.
64003
.
34.
Lavrenčič
,
M.
, and
Brank
,
B.
,
2018
, “
Simulation of Shell Buckling by Implicit Dynamics and Numerically Dissipative Schemes
,”
Thin-Walled Struct.
,
132
, pp.
682
699
.
35.
Huang
,
N.-C.
,
1964
, “
Unsymmetrical Buckling of Thin Shallow Spherical Shells
,”
ASME J. Appl. Mech.
,
31
(
3
), pp.
447
457
.
36.
Huang
,
N. C.
,
1969
, “
Axisymmetric Dynamic Snap-Through of Elastic Clamped Shallow Spherical Shells
,”
AIAA J.
,
7
(
2
), pp.
215
220
.
37.
Vaziri
,
A.
, and
Mahadevan
,
L.
,
2008
, “
Localized and Extended Deformations of Elastic Shells
,”
Proc. Natl. Acad. Sci. U.S.A.
,
105
(
23
), pp.
7913
7918
.
38.
Lazarus
,
A.
,
Florijn
,
H.
, and
Reis
,
P. M.
,
2012
, “
Geometry-Induced Rigidity in Nonspherical Pressurized Elastic Shells
,”
Phys. Rev. Lett.
,
109
(
14
), p.
144301
.
39.
Shim
,
J.
,
Perdigou
,
C.
,
Chen
,
E. R.
,
Bertoldi
,
K.
, and
Reis
,
P. M.
,
2012
, “
Buckling-Induced Encapsulation of Structured Elastic Shells Under Pressure
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
(
16
), pp.
5978
5983
.
40.
Marthelot
,
J.
,
López Jiménez
,
F.
,
Lee
,
A.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2017
, “
Buckling of a Pressurized Hemispherical Shell Subjected to a Probing Force
,”
ASME J. Appl. Mech.
,
84
(
12
), p.
121005
.
41.
Evkin
,
A.
,
Kolesnikov
,
M.
, and
Prikazchikov
,
D. A.
,
2017
, “
Buckling of a Spherical Shell Under External Pressure and Inward Concentrated Load: Asymptotic Solution
,”
Math. Mech. Solids
,
22
(
6
), pp.
1425
1437
.
42.
Hutchinson
,
J. W.
, and
Thompson
,
J. M. T.
,
2018
, “
Imperfections and Energy Barriers in Shell Buckling
,”
Int. J. Solids Struct.
,
148
, pp.
157
168
.
43.
Chen
,
T.
,
Pauly
,
M.
, and
Reis
,
P. M.
,
2021
, “
A Reprogrammable Mechanical Metamaterial With Stable Memory
,”
Nature
,
589
(
7842
), pp.
386
390
.
44.
Gioncu
,
V.
,
1995
, “
Buckling of Reticulated Shells: State-of-the-Art
,”
Int. J. Space Struct.
,
10
(
1
), pp.
1
46
.
45.
Plaut
,
R. H.
,
2018
, “
Snap-Through of Shallow Reticulated Domes Under Unilateral Displacement Control
,”
Int. J. Solids Struct.
,
148
, pp.
24
34
.
46.
Guan
,
Y.
,
Virgin
,
L. N.
, and
Helm
,
D.
,
2018
, “
Structural Behavior of Shallow Geodesic Lattice Domes
,”
Int. J. Solids Struct.
,
155
, pp.
225
239
.
47.
Bergou
,
M.
,
Wardetzky
,
M.
,
Robinson
,
S.
,
Audoly
,
B.
, and
Grinspun
,
E.
,
2008
, “
Discrete Elastic Rods
,”
ACM Trans. Graph.
,
27
(
3
), p.
63
.
48.
Bergou
,
M.
,
Audoly
,
B.
,
Vouga
,
E.
,
Wardetzky
,
M.
, and
Grinspun
,
E.
,
2010
, “
Discrete Viscous Threads
,”
ACM Trans. Graph.
,
29
, p.
116
.
49.
Jawed
,
M. K.
,
Novelia
,
A.
, and
O’Reilly
,
O. M.
,
2018
,
A Primer on the Kinematics of Discrete Elastic Rods
,
Springer
,
Cham
.
50.
Qin
,
L.
,
Huang
,
W.
,
Du
,
Y.
,
Zheng
,
L.
, and
Jawed
,
M. K.
,
2020
, “
Genetic Algorithm-Based Inverse Design of Elastic Gridshells
,”
Struct. Multidiscipl. Optim.
,
62
(
5
), pp.
2691
2707
.
51.
Huang
,
W.
,
Qin
,
L.
, and
Khalid Jawed
,
M.
,
2021
, “
Numerical Method for Direct Solution to Form-Finding Problem in Convex Gridshell
,”
ASME J. Appl. Mech.
,
88
(
2
), p.
021012
.
52.
Romero
,
V.
,
Ly
,
M.
,
Rasheed
,
A.-H.
,
Charrondière
,
R.
,
Lazarus
,
A.
,
Neukirch
,
S.
, and
Bertails-Descoubes
,
F.
,
2021
, “
Physical Validation of Simulators in Computer Graphics: A New Framework Dedicated to Slender Elastic Structures and Frictional Contact
,”
ACM Trans. Graph.
53.
Panetta
,
J.
,
Konaković-Luković
,
M.
,
Isvoranu
,
F.
,
Bouleau
,
E.
, and
Pauly
,
M.
,
2019
, “
X-shells: A New Class of Deployable Beam Structures
,”
ACM Trans. Graph.
,
38
(
4
), p.
83
.
54.
Kaldor
,
J. M.
,
James
,
D. L.
, and
Marschner
,
S.
,
2008
, “
Simulating Knitted Cloth at the Yarn Level
,”
ACM Trans. Graph.
,
27
, p.
65
.
55.
Yuksel
,
C.
,
Kaldor
,
J. M.
,
James
,
D. L.
, and
Marschner
,
S.
,
2012
, “
Stitch Meshes for Modeling Knitted Clothing With Yarn-Level Detail
,”
ACM Trans. Graph.
,
31
(
4
), p.
37
.
56.
Poincloux
,
S.
,
Adda-Bedia
,
M.
, and
Lechenault
,
F.
,
2018
, “
Geometry and Elasticity of a Knitted Fabric
,”
Phys. Rev. X
,
8
(
2
), p.
021075
.
57.
Poincloux
,
S.
,
Adda-Bedia
,
M.
, and
Lechenault
,
F.
,
2018
, “
Crackling Dynamics in the Mechanical Response of Knitted Fabrics
,”
Phys. Rev. Lett.
,
121
(
5
), p.
058002
.
58.
Baraff
,
D.
, and
Witkin
,
A.
,
1998
, “
Large Steps in Cloth Simulation
,” Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, Orlando, FL, July 19–24,
ACM
,
New York
, pp.
43
54
.
59.
Grinspun
,
E.
,
Hirani
,
A. N.
,
Desbrun
,
M.
, and
Schröder
,
P.
,
2003
, “
Discrete Shells
,”
Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
,
San Diego, CA
,
July 26–27
,
Eurographics Association
, pp.
62
67
.
60.
Sharf
,
I.
,
Thomsen
,
B.
,
Botta
,
E. M.
, and
Misra
,
A. K.
,
2017
, “
Experiments and Simulation of a Net Closing Mechanism for Tether-Net Capture of Space Debris
,”
Acta Astronaut.
,
139
, pp.
332
343
.
61.
Hou
,
Y.
,
Liu
,
C.
,
Hu
,
H.
,
Yang
,
W.
, and
Shi
,
J.
,
2021
, “
Dynamic Computation of a Tether-Net System Capturing a Space Target Via Discrete Elastic Rods and an Energy-Conserving Integrator
,”
Acta Astronaut.
,
186
, pp.
118
134
.
62.
Huang
,
W.
, and
Jawed
,
M. K.
,
2019
, “
Newmark-Beta Method in Discrete Elastic Rods Algorithm to Avoid Energy Dissipation
,”
ASME J. Appl. Mech.
,
86
(
8
), p.
084501
.
63.
Huang
,
W.
,
Wang
,
Y.
,
Li
,
X.
, and
Jawed
,
M. K.
,
2020
, “
Shear Induced Supercritical Pitchfork Bifurcation of Pre-Buckled Bands, From Narrow Strips to Wide Plates
,”
J. Mech. Phys. Solids
,
145
, p.
104168
.
64.
Pérez
,
J.
,
Thomaszewski
,
B.
,
Coros
,
S.
,
Bickel
,
B.
,
Canabal
,
J. A.
,
Sumner
,
R.
, and
Otaduy
,
M. A.
,
2015
, “
Design and Fabrication of Flexible Rod Meshes
,”
ACM Trans. Graph.
,
34
(
4
), p.
138
.
65.
Sageman-Furnas
,
A. O.
,
Chern
,
A.
,
Ben-Chen
,
M.
, and
Vaxman
,
A.
,
2019
, “
Chebyshev Nets From Commuting Polyvector Fields
,”
ACM Trans. Graph.
,
38
(
6
), p.
172
.
You do not currently have access to this content.