Analytical displacement and stress fields with stress concentration factors (SCFs) are derived for linearly elastic annular regions subject to inhomogeneous boundary conditions: an infinite class of the mth order polynomial antiplane tractions or displacements. The solution of the Laplace equation governing the out-of-plane problem covers both rigid and void circular inclusions forming the core of the annulus. The results show first that the SCF and the loading order are inversely proportional. In particular, the SCF approaches value 2 when either the outer boundary of the annulus tends to infinity or the order of the polynomial loading increases. Second, the number of peculiar points on the inner contour having null stress increases with the increasing loading order. The analytical solution is confirmed and extended to noncircular enclosures via finite element analysis by exploiting the heat-stress analogy. The results show that the closed-form solution for a circular annulus can be used as an accurate approximation for noncircular enclosures. Altogether, the results shown can be exploited for analyzing complex loading conditions and/or multiple rigid or void inclusions for enhancing the design of hollow and reinforced composites materials.

References

1.
Zou
,
W. N.
,
Lee
,
Y. G.
, and
He
,
Q. C.
,
2017
, “
Inclusions Inside a Bounded Elastic Body Undergoing Anti-Plane Shear
,”
Math. Mech. Solids
,
23
(4), pp.
588
605
.
2.
Zappalorto
,
M.
,
Lazzarin
,
P.
, and
Yates
,
J. R.
,
2008
, “
Elastic Stress Distributions for Hyperbolic and Parabolic Notches in round Shafts Under Torsion and Uniform Antiplane Shear Loadings
,”
Int. J. Solids Struct.
,
45
(
18–19
), pp.
4879
4901
.
3.
Shahzad
,
S.
, and
Dal Corso
,
F.
,
2018
, “
Torsion Elastic Solids with Sparsely Distributed Collinear Voids
,” (in preparation).
4.
Radaj
,
D.
,
1990
,
Design and Analysis of Fatigue Resistant Welded Structures
,
Elsevier
, Cambridge, UK.
5.
Savin
,
G. N.
,
1961
,
Stress Concentration around Holes
,
Pergamon Press
, London.
6.
Muskhelishvili
,
N. I.
,
1963
,
Some Basic Problems of the Mathematical Theory of Elasticity
,
P. Noordhoff Ltd
.,
Groningen, The Netherlands
.
7.
Slaughter
,
W. S.
,
2002
,
The Linearized Theory of Elasticity
,
Springer Science & Business Media
, New York.
8.
Toubal
,
L.
,
Karama
,
M.
, and
Lorrain
,
B.
,
2005
, “
Stress Concentration in a Circular Hole in Composite Plate
,”
Compos. Struct.
,
68
(
1
), pp.
31
36
.
9.
Givoli
,
D.
, and
Elishakoff
,
I.
,
1992
, “
Stress Concentration at a Nearly Circular Hole With Uncertain Irregularities
,”
ASME. J. Appl. Mech.
,
59
(
2S
), pp.
65
71
.
10.
Hoff
,
N. J.
,
1981
, “
Stress Concentrations in Cylindrically Orthotropic Composite Plates With a Circular Hole
,”
ASME. J. Appl. Mech.
,
48
(
3
), pp.
563
569
.
11.
Lubarda
,
V. A.
,
2003
, “
Circular Inclusions in Anti-Plane Strain Couple Stress Elasticity
,”
Int. J. Solids Struct.
,
40
(
15
), pp.
3827
3851
.
12.
Meguid
,
S. A.
, and
GongStress
,
S. X.
,
1993
, “
Stress Concentration Around Interacting Circular Holes: A Comparison Between Theory and Experiments
,”
Eng. Fract. Mech.
,
44
(
2
), pp.
247
256
.
13.
Misseroni
,
D.
,
Dal Corso
,
F.
,
Shahzad
,
S.
, and
Bigoni
,
D.
,
2014
, “
Stress Concentration Near Stiff Inclusions: Validation of Rigid Inclusion Model and Boundary Layers by Means of Photoelasticity
,”
Eng. Fract. Mech.
,
121–122
, pp.
87
97
.
14.
Dal Corso
,
F.
,
Bigoni
,
D.
,
Noselli
,
G.
,
Misseroni
,
D.
, and
Shahzad
,
S.
,
2014
, “
Rigid Inclusions: Stress Singularity, Inclusion Neutrality and Shear Bands
,”
Third International Conference on Fracture, Fatigue and Wear
, Kitakyushu, Japan, Sept. 1–3, pp.
40
42
.
15.
Setiawan
,
Y.
,
Gan
,
B. S.
, and
Han
,
A. L.
,
2017
, “
Modeling of the ITZ Zone in Concrete: Experiment and Numerical Simulation
,”
Comput. Concr.
,
19
(6), pp.
647
655
.
16.
Ru
,
C. Q.
, and
Schiavone
,
P.
,
1997
, “
A Circular Inhomogeneity With Circumferentially Inhomogeneous Interface in Antiplane Shear
,”
Proc. R. Soc. A
,
453
(
1967
), pp.
2551
2572
.
17.
Zappalorto
,
M.
,
Lazzarin
,
P.
, and
Berto
,
F.
,
2009
, “
Stress Concentration Near Holes in the Elastic Plane Subjected to Antiplane Deformation
,”
Mater. Sci.
,
48
(
4
), pp.
415
426
.
18.
Sih
,
G. C.
,
1965
, “
Stress Distribution Near Internal Crack Tips for Longitudinal Shear Problems
,”
ASME J. Appl. Mech.
,
32
(
1
), pp.
51
58
.
19.
Kohno
,
Y.
, and
Ishikawa
,
H.
,
1995
, “
Singularities and Stress Intensities at the Corner Point of a Polygonal Hole and Rigid Polygonal Inclusion Under Antiplane Shear
,”
Int. J. Eng. Sci.
,
33
(
11
), pp.
1547
1560
.
20.
Seweryn
,
A.
, and
Molski
,
K.
,
1996
, “
Elastic Stress Singularities and Corresponding Generalized Stress Intensity Factors for Angular Corners Under Various Boundary Conditions
,”
Eng. Fract. Mech.
,
55
(
4
), pp.
529
556
.
21.
Lubarda
,
V. A.
,
2015
, “
On the Circumferential Shear Stress Around Circular and Elliptical Holes
,”
Arch. Appl. Mech.
,
85
(
2
), pp.
223
235
.
22.
Movchan
,
A. B.
,
Movchan
,
N. V.
, and
Poulton
,
C. G.
,
2002
,
Asymptotic Models of Fields in Dilute and Densely Packed Composites
,
Imperial College Press
, London.
23.
Chen
,
J.
, and
Wu
,
A.
,
2006
, “
Null-Field Approach for the Multi-Inclusion Problem Under Antiplane Shears
,”
ASME. J. Appl. Mech.
,
74
(
3
), pp.
469
487
.
24.
Sendeckyj
,
G. P.
,
1971
, “
Multiple Circular Inclusion Problems in Longitudinal Shear Deformation
,”
J. Elasticity
,
1
(
1
), pp.
83
86
.
25.
Gong
,
S. X.
,
1995
, “
Antiplane Interaction Among Multiple Circular Inclusions
,”
Mech. Res. Commun.
,
22
(
3
), pp.
257
262
.
26.
Bacca
,
M.
,
Dal Corso
,
F.
,
Veber
,
D.
, and
Bigoni
,
D.
,
2013
, “
Anisotropic Effective Higher-Order Response of Heterogeneous Cauchy Elastic Materials
,”
Mech. Res. Commun.
,
54
, pp.
63
71
.
27.
Bigoni
,
D.
, and
Drugan
,
W. J.
,
2007
, “
Analytical Derivation of Cosserat Moduli Via Homogenization of Heterogeneous Elastic Materials
,”
ASME J. Appl. Mech.
,
74
(
4
), pp.
741
753
.
28.
Schiavone
,
P.
,
2003
, “
Neutrality of the Elliptic Inhomogeneity in the Case of Non-Uniform Loading
,”
Int. J. Eng. Sci.
,
41
(18), pp.
2081
2090
.
29.
Van Vliet
,
D.
,
Schiavone
,
P.
, and
Mioduchowski
,
A.
,
2003
, “
On the Design of Neutral Elastic Inhomogeneities in the Case of Non-Uniform Loading
,”
Math. Mech. Solids
,
41
(
2
), pp.
2081
2090
.
30.
Vasudevan
,
M.
, and
Schiavone
,
P.
,
2006
, “
New Results Concerning the Identification of Neutral Inhomogeneities in Plane Elasticity
,”
Arch. Mech.
,
58
(1), pp.
45
58
.http://am.ippt.pan.pl/am/article/view/v58p45
31.
Dal Corso
,
F.
,
Shahzad
,
S.
, and
Bigoni
,
D.
,
2016
, “
Isotoxal Star-Shaped Polygonal Voids and Rigid Inclusions in Nonuniform Antiplane Shear Fields—Part I: Formulation and Full-Field Solution
,”
Int. J. Solids Struct.
,
85–86
, pp.
67
75
.
32.
Dal Corso
,
F.
,
Shahzad
,
S.
, and
Bigoni
,
D.
,
2016
, “
Isotoxal Star-Shaped Polygonal Voids and Rigid Inclusions in Nonuniform Antiplane Shear Fields—Part II: Singularities, Annihilation and Invisibility
,”
Int. J. Solids Struct.
,
85–86
, pp.
76
88
.
33.
Shahzad
,
S.
,
2016
, “
Stress Singularities, Annihilations and Invisibilities Induced by Polygonal Inclusions in Linear Elasticity
,”
Ph.D. thesis
, University of Trento, Trento, Italy.http://eprints-phd.biblio.unitn.it/1769/
34.
Shahzad
,
S.
,
Dal Corso
,
F.
, and
Bigoni
,
D.
,
2016
, “
Hypocycloidal Inclusions in Nonuniform Out-of-Plane Elasticity: Stress Singularity vs Stress Reduction
,”
J. Elasticity
,
126
(
2
), pp.
215
229
.
35.
Shahzad
,
S.
, and
Niiranen
,
J.
,
2018
, “
Analytical Solution With Validity Analysis for an Elliptical Void and Rigid Inclusion Under Uniform and Nonuniform Antiplane Loading
,” (in preparation).
36.
Polyanin
,
A. D.
,
2002
,
Handbook of Linear Partial Differential Equations for Engineers and Scientists
,
Chapman and Hall/CRC
, Boca Raton, FL.
37.
Morrison
,
N.
,
1994
,
Introduction to Fourier Analysis
,
Wiley
,
New York
.
38.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
Oxford University Press
, London.
39.
Chen
,
Z.
,
Zhu
,
W.
,
Di
,
Q.
, and
Wang
,
W.
,
2015
, “
Burst Pressure Analysis of Pipes With Geometric Eccentricity and Small Thickness-to-Diameter Ratio
,”
J. Pet. Sci. Eng.
,
127
, pp.
452
458
.
You do not currently have access to this content.