Viscoelasticity plays an important role in the instability and performance of soft transducers. Wrinkling, an instability phenomenon commonly observed on soft materials, has been studied extensively. In this paper, we theoretically investigate the viscoelastic effect on the wrinkle formation of a dielectric-elastomer (DE) balloon subjected to combined electromechanical loads. Results show that the critical voltage for the wrinkle formation of a DE balloon gradually decreases as the material undergoes viscoelastic relaxation and finally reaches a stable value. The wrinkles in the lateral direction always have critical voltages equal to or lower than those in the longitudinal direction. What is more, the nucleation sites of wrinkles always move from the apex to the rim of DE balloon with the viscoelastic relaxation of DE. It takes less time for the DE balloon with higher pressure to reach the stable state. Higher pressure also leads to the stable wrinkle nucleation site moving closer to the fixed edge of the DE balloon. An experiment is conducted to illustrate the effect of viscoelasticity on the wrinkle propagation of a DE balloon, and the results agree well with the model predictions. This study provides a guide in the wrinkling control of a DE balloon and may help the future design of DE transducers.

References

1.
Mao
,
G.
,
Huang
,
X.
,
Liu
,
J.
,
Li
,
T.
,
Qu
,
S.
, and
Yang
,
W.
,
2015
, “
Dielectric Elastomer Peristaltic Pump Module With Finite Deformation
,”
Smart Mater. Struct.
,
24
(
7
), p.
075026
.
2.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.
3.
Jin Adrian Koh
,
S.
,
Keplinger
,
C.
,
Li
,
T.
,
Bauer
,
S.
, and
Suo
,
Z.
,
2011
, “
Dielectric Elastomer Generators: How Much Energy Can Be Converted?
,”
IEEE/ASME Trans. Mechatronics
,
16
(
1
), pp.
33
41
.
4.
Gu
,
G. Y.
,
Gupta
,
U.
,
Zhu
,
J.
,
Zhu
,
L. M.
, and
Zhu
,
X.
,
2017
, “
Modeling of Viscoelastic Electromechanical Behavior in a Soft Dielectric Elastomer Actuator
,”
IEEE Trans. Robot.
,
33
(5), pp. 1263–1271.
5.
Mao
,
G.
,
Huang
,
X.
,
Diab
,
M.
,
Liu
,
J.
, and
Qu
,
S.
,
2016
, “
Controlling Wrinkles on the Surface of a Dielectric Elastomer Balloon
,”
Extreme Mech. Lett.
,
9
, pp.
139
146
.
6.
Zhou
,
J.
,
Jiang
,
L.
, and
Khayat
,
R. E.
,
2014
, “
Viscoelastic Effects on Frequency Tuning of a Dielectric Elastomer Membrane Resonator
,”
J. Appl. Phys.
,
115
(
12
), p.
124106
.
7.
Plante
,
J.-S.
, and
Dubowsky
,
S.
,
2006
, “
Large-Scale Failure Modes of Dielectric Elastomer Actuators
,”
Int. J. Solids Struct.
,
43
(
25–26
), pp.
7727
7751
.
8.
Li
,
T.
,
Qu
,
S.
, and
Yang
,
W.
,
2012
, “
Energy Harvesting of Dielectric Elastomer Generators Concerning Inhomogeneous Fields and Viscoelastic Deformation
,”
J. Appl. Phys.
,
112
(
3
), p.
034119
.
9.
Mao
,
G.
,
Huang
,
X.
,
Diab
,
M.
,
Li
,
T.
,
Qu
,
S.
, and
Yang
,
W.
,
2015
, “
Nucleation and Propagation of Voltage-Driven Wrinkles in an Inflated Dielectric Elastomer Balloon
,”
Soft Matter
,
11
(
33
), pp.
6569
6575
.
10.
Liu
,
F.
, and
Zhou
,
J.
,
2017
, “
Shooting and Arc-Length Continuation Method for Periodic Solution and Bifurcation of Nonlinear Oscillation of Viscoelastic Dielectric Elastomers
,”
Trans. ASME J. Appl. Mech.
,
85
(
1
), p.
011005
.
11.
Lu
,
T.
,
Wang
,
J.
,
Yang
,
R.
, and
Wang
,
T. J.
,
2016
, “
A Constitutive Model for Soft Materials Incorporating Viscoelasticity and Mullins Effect
,”
Trans. ASME J. Appl. Mech.
,
84
(
2
), p.
021010
.
12.
Chen
,
F.
, and
Wang
,
M. Y.
,
2017
, “
Simulation of Networked Dielectric Elastomer Balloon Actuators
,”
IEEE Trans. Robot. Autom. Lett.
,
1
(
1
), pp.
221
226
.
13.
Jung
,
K.
,
Kim
,
K. J.
, and
Choi
,
H. R.
,
2008
, “
A Self-Sensing Dielectric Elastomer Actuator
,”
Sens. Actuators, A
,
143
(
2
), pp.
343
351
.
14.
Carpi
,
F.
,
Frediani
,
G.
,
Turco
,
S.
, and
De Rossi
,
D.
,
2011
, “
Bioinspired Tunable Lens With Muscle-Like Electroactive Elastomers
,”
Adv. Funct. Mater
,
21
(
21
), pp.
4152
4158
.
15.
Kaltseis
,
R.
,
Keplinger
,
C.
,
Baumgartner
,
R.
,
Kaltenbrunner
,
M.
,
Li
,
T.
,
Mächler
,
P.
,
Schwödiauer
,
R.
,
Suo
,
Z.
, and
Bauer
,
S.
,
2011
, “
Method for Measuring Energy Generation and Efficiency of Dielectric Elastomer Generators
,”
Appl. Phys. Lett.
,
99
(
16
), p.
162904
.
16.
Tugui
,
C.
,
Ursu
,
C.
,
Sacarescu
,
L.
,
Asandulesa
,
M.
,
Stoian
,
G.
,
Ababei
,
G.
, and
Cazacu
,
M.
,
2017
, “
Stretchable Energy Harvesting Devices: Attempts to Produce High-Performance Electrodes
,”
ACS Sustainable Chem. Eng.
,
5
(
9
), pp.
7851
7858
.
17.
Li
,
Z.
,
Wang
,
Y.
,
Foo
,
C. C.
,
Godaba
,
H.
,
Zhu
,
J.
, and
Yap
,
C. H.
,
2017
, “
The Mechanism for Large-Volume Fluid Pumping Via Reversible Snap-Through of Dielectric Elastomer
,”
J. Appl. Phys.
,
122
(
8
), p.
084503
.
18.
Wang
,
F.
,
Yuan
,
C.
,
Lu
,
T.
, and
Wang
,
T. J.
,
2017
, “
Anomalous Bulging Behaviors of a Dielectric Elastomer Balloon Under Internal Pressure and Electric Actuation
,”
J. Mech. Phys. Solids
,
102
, pp.
1
16
.
19.
Li
,
T.
,
Keplinger
,
C.
,
Baumgartner
,
R.
,
Bauer
,
S.
,
Yang
,
W.
, and
Suo
,
Z.
,
2013
, “
Giant Voltage-Induced Deformation in Dielectric Elastomers Near the Verge of Snap-Through Instability
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
611
628
.
20.
Liang
,
X.
, and
Cai
,
S.
,
2018
, “
New Electromechanical Instability Modes in Dielectric Elastomer Balloons
,”
Int. J. Solids Struct.
,
132–133
, pp.
96
104
.
21.
Leng
,
J.
,
Liu
,
L.
,
Liu
,
Y.
,
Yu
,
K.
, and
Sun
,
S.
,
2009
, “
Electromechanical Stability of Dielectric Elastomer
,”
Appl. Phys. Lett.
,
94
(
21
), p.
061921
.
22.
Liu
,
L.
,
Zhang
,
Z.
,
Li
,
J.
,
Li
,
T.
,
Liu
,
Y.
, and
Leng
,
J.
,
2015
, “
Stability of Dielectric Elastomer/Carbon Nanotube Composites Coupling Electrostriction and Polarization
,”
Composites, Part B
,
78
, pp.
35
41
.
23.
Li
,
K.
,
Wu
,
W.
,
Jiang
,
Z.
, and
Cai
,
S.
,
2017
, “
Voltage-Induced Wrinkling in a Constrained Annular Dielectric Elastomer Film
,”
Trans. ASME J. Appl. Mech.
,
85
(
1
), p.
011007
.
24.
Yang
,
S.
,
Zhao
,
X.
, and
Sharma
,
P.
,
2017
, “
Revisiting the Instability and Bifurcation Behavior of Soft Dielectrics
,”
Trans. ASME J. Appl. Mech.
,
84
(
3
), p.
031008
.
25.
Ho
,
S.
,
Banerjee
,
H.
,
Foo
,
Y. Y.
,
Godaba
,
H.
,
Aye
,
W. M. M.
,
Zhu
,
J.
, and
Yap
,
C. H.
,
2017
, “
Experimental Characterization of a Dielectric Elastomer Fluid Pump and Optimizing Performance Via Composite Materials
,”
J. Intell. Mater. Syst. Struct.
,
28
(
20
), pp.
3054
3065
.
26.
Zhao
,
X.
,
Koh
,
S. J. A.
, and
Suo
,
Z.
,
2011
, “
Nonequilibrium Thermodynamics of Dielectric Elastomers
,”
Int. J. Appl. Mech.
,
3
(
2
), pp.
203
217
.
27.
Hong
,
W.
,
2011
, “
Modeling Viscoelastic Dielectrics
,”
J. Mech. Phys. Solids
,
59
(
3
), pp.
637
650
.
28.
Bai
,
Y.
,
Jiang
,
Y.
,
Chen
,
B.
,
Chiang Foo
,
C.
,
Zhou
,
Y.
,
Xiang
,
F.
,
Zhou
,
J.
,
Wang
,
H.
, and
Suo
,
Z.
,
2014
, “
Cyclic Performance of Viscoelastic Dielectric Elastomers With Solid Hydrogel Electrodes
,”
Appl. Phys. Lett.
,
104
(
6
), p.
062902
.
29.
Kollosche
,
M.
,
Kofod
,
G.
,
Suo
,
Z.
, and
Zhu
,
J.
,
2015
, “
Temporal Evolution and Instability in a Viscoelastic Dielectric Elastomer
,”
J. Mech. Phys. Solids
,
76
, pp.
47
64
.
30.
Wang
,
H.
,
Lei
,
M.
, and
Cai
,
S.
,
2013
, “
Viscoelastic Deformation of a Dielectric Elastomer Membrane Subject to Electromechanical Loads
,”
J. Appl. Phys.
,
113
(
21
), p.
213508
.
31.
Sheng
,
J.
,
Chen
,
H.
,
Liu
,
L.
,
Zhang
,
J.
,
Wang
,
Y.
, and
Jia
,
S.
,
2013
, “
Dynamic Electromechanical Performance of Viscoelastic Dielectric Elastomers
,”
J. Appl. Phys.
,
114
(
5
), p.
134101
.
32.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
.
33.
Zhao
,
X.
, and
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers Capable of Giant Deformation of Actuation
,”
Phys. Rev. Lett.
,
104
(
17
), p.
178302
.
34.
Mao
,
G.
,
Wu
,
L.
,
Liang
,
X.
, and
Qu
,
S.
,
2017
, “
Morphology of Voltage-Triggered Ordered Wrinkles of a Dielectric Elastomer Sheet
,”
Trans. ASME J. Appl. Mech.
,
84
(
11
), p.
111005
.
35.
Wang
,
H.
,
Cai
,
S.
,
Carpi
,
F.
, and
Suo
,
Z.
,
2012
, “
Computational Model of Hydrostatically Coupled Dielectric Elastomer Actuators
,”
Trans. ASME J. Appl. Mech.
,
79
(
3
), p.
031008
.
36.
Zhang
,
J.
,
Wang
,
Y.
,
Chen
,
H.
, and
Li
,
B.
,
2015
, “
Energy Harvesting Performance of Viscoelastic Polyacrylic Dielectric Elastomers
,”
Int. J. Smart Nano Mater.
,
6
(
3
), pp.
162
170
.
You do not currently have access to this content.