In the analysis of origami structures, the deformation of shells usually couples with the rotation of creases, which leads to the difficulty of solving high-order differential equations. In this study, first the deformation of creased shell is solved analytically. Then, an approximation method named virtual crease method (VCM) is employed, where virtual creases are used to approximate the deformation of shells, and then a complex structure can be simplified into rigid shells connected by real and virtual creases. Then, VCM is used to analyze the large deflection of shells as well as the bistable states of origami structures, such as single creased shell and cell of Miura-Ori. Compared with experiment results, the deformed states given by VCM are quite accurate. Therefore, this generalized method may have potential applications in the analysis of origami structures.

References

1.
Hogstrom
,
K.
,
Backes
,
P.
,
Burdick
,
J.
,
Kennedy
,
B.
,
Kim
,
J.
,
Lee
,
N.
,
Malakhova
,
G.
,
Mukherjee
,
R.
,
Pellegrino
,
S.
, and
Wu
,
Y.-H.
,
2014
, “
A Robotically-Assembled 100-Meter Space Telescope
,”
International Astronautical Congress
, Toronto, ON, Canada, Sept. 29–Oct. 3.
2.
Murtaza
,
N. A.
, and
Ihtesham
,
U. R.
,
2011
, “
An Auxetic Structure Configured as Oesophageal Stent With Potential to Be Used for Palliative Treatment of Oesophageal Cancer; Development and In Vitro Mechanical Analysis
,”
J. Mater. Sci. Mater. Med.
,
22
(
11
), pp.
2573
2581
.
3.
Martinez
,
R. V.
,
Fish
,
C. R.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2012
, “
Magnetic Assembly of Soft Robots With Hard Components
,”
Adv. Funct. Mater
,
22
(
7
), pp.
1376
1384
.
4.
Babaee
,
S.
,
Overvelde
,
J. T. B.
,
Chen
,
E. R.
,
Tournat
,
V.
, and
Bertoldi
,
K.
,
2016
, “
Reconfigurable Origami-Inspired Acoustic Waveguides
,”
Sci. Adv.
,
2
(11), p.
e1601019
.
5.
Han
,
D.
,
Pal
,
S.
,
Nangreave
,
J.
,
Deng
,
Z.
,
Liu
,
Y.
, and
Yan
,
H.
,
2011
, “
DNA Origami With Complex Curvatures in Three-Dimensional Space
,”
Science
,
332
(
6027
), pp.
342
346
.
6.
Lechenault
,
F.
,
Thiria
,
B.
, and
Adda-Bedia
,
M.
,
2014
, “
Mechanical Response of a Creased Sheet
,”
Phys. Rev. Lett.
,
112
, p.
244301
.
7.
Waitukaitis
,
S.
,
Menaut
,
R.
,
Gin-ge Chen
,
B.
, and
Hecke
,
M. V.
,
2015
, “
Origami Multistability: From Single Vertices to Metasheets
,”
Phys. Rev. Lett.
,
114
(5), p.
055503
.
8.
Lechenault
,
F.
, and
Adda-Bedia
,
M.
,
2015
, “
Generic Bistability in Creased Conical Surfaces
,”
Phys. Rev. Lett.
,
115
(23), p.
235501
.
9.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
.
10.
Overvelde
,
J. T. B.
,
Jong
,
T. A.
,
Shevchenko
,
Y.
,
Becerra
,
S. A.
,
Whitesides
,
G. M.
,
Weaver
,
J. C.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2016
, “
A Three-Dimensional Actuated Origami-Inspired Transformable Metamaterial With Multiple Degrees of Freedom
,”
Nat. Commun.
,
7
, p.
10929
.
11.
Wittbrodt, E., Adamiec-Wójcik, I., and Wojciech, S.,
2007
,
Dynamics of Flexible Multibody Systems: Rigid Finite Element Method
,
Springer-Verlag
,
Berlin
.
12.
Wei
,
Z. Y.
,
Guo
,
Z. V.
,
Dudte
,
L.
,
Liang
,
H. Y.
, and
Mahadevan
,
L.
,
2013
, “
Geometric Mechanics of Periodic Pleated Origami
,”
Phys. Rev. Lett.
,
110
(21), p.
215501
.
13.
Seffen
,
K. A.
,
2016
, “
Fundamental Conical Defects: The d-Cone, Its e-Cone and Its p-Cone
,”
Phys. Rev. E
,
94
(1), p.
013002
.
14.
Nocedal
,
J.
, and Wright, S. J.,
2006
,
Sequential Quadratic Programming
,
Springer
,
New York
.
15.
Cerda
,
E.
, and
Mahadevan
,
L.
,
1998
, “
Conical Surfaces and Crescent Singularities in Crumpled Sheets
,”
Phys. Rev. Lett.
,
80
(
11
), p.
2358
.
16.
Starostin
,
E. L.
, and
van der Heijden
,
G. H. M.
,
2007
, “
The Shape of a Mobius Strip
,”
Nat. Mater.
,
6
, pp.
563
567
.
You do not currently have access to this content.