In a companion paper,2 we have obtained the closed-form solutions to the stress and strain fields of a two-dimensional Eshelby inclusion. The current work is concerned with the complementary formulation of the displacement. All the formulae are derived in explicit closed-form, based on the degenerate case of a three-dimensional (3D) ellipsoidal inclusion. A benchmark example is provided to validate the present analytical solutions. In conjunction with our previous study, a complete elasticity solution to the classical elliptic cylindrical inclusion is hence documented in Cartesian coordinates for the convenience of engineering applications.
Issue Section:
Technical Brief
References
1.
Eshelby
, J. D.
, 1957
, “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,” Proc. R. Soc. London, Ser. A
, 241
(1226
), pp. 376
–396
.2.
Mura
, T.
, 1987
, Micromechanics of Defects in Solids
, Springer
, Dordrecht, The Netherlands.3.
Mura
, T.
, Shodja
, H. M.
, and Hirose
, Y.
, 1996
, “Inclusion Problems
,” ASME Appl. Mech. Rev.
, 49
(10S
), pp. S118
–S127
.4.
Rudnicki
, J. W.
, 2007
, “Models for Compaction Band Propagation
,” Rock Physics and Geomechanics in the Study of Reservoirs and Repositories
, Vol. 284
, Geological Society
, London
, pp. 107
–125
.5.
Zhou
, K.
, Hoh
, H. J.
, Wang
, X.
, Keer
, L. M.
, Pang
, J. H. L.
, Song
, B.
, and Wang
, Q. J.
, 2013
, “A Review of Recent Works on Inclusions
,” Mech. Mater.
, 60
, pp. 144
–158
.6.
Chiu
, Y. P.
, 1980
, “On the Internal Stresses in a Half Plane and a Layer Containing Localized Inelastic Strains or Inclusions
,” ASME J. Appl. Mech.
, 47
(2
), pp. 313
–318
.7.
Nozaki
, H.
, and Taya
, M.
, 1997
, “Elastic Fields in a Polygon-Shaped Inclusion With Uniform Eigenstrains
,” ASME J. Appl. Mech.
, 64
(3
), pp. 495
–502
.8.
Muskhelishvili
, N. I.
, 1953
, Some Basic Problems of the Mathematical Theory of Elasticity
, P. Noordhoff
, Groningen, The Netherlands
.9.
Ru
, C. Q.
, 1999
, “Analytic Solution for Eshelby's Problem of an Inclusion of Arbitrary Shape in a Plane or Half-Plane
,” ASME J. Appl. Mech.
, 66
(2
), pp. 315
–322
.10.
Jin
, X.
, Keer
, L. M.
, and Wang
, Q.
, 2009
, “New Green's Function for Stress Field and a Note of Its Application in Quantum-Wire Structures
,” Int. J. Solids Struct.
, 46
(21
), pp. 3788
–3798
.11.
Eshelby
, J.
, 1959
, “The Elastic Field Outside an Ellipsoidal Inclusion
,” Proc. R. Soc. London, Ser. A
, 252
(1271
), pp. 561
–569
.12.
Jin
, X.
, Lyu
, D.
, Zhang
, X.
, Zhou
, Q.
, Wang
, Q.
, and Keer
, L. M.
, 2016
, “Explicit Analytical Solutions for a Complete Set of the Eshelby Tensors of an Ellipsoidal Inclusion
,” ASME J. Appl. Mech.
, 83
(12
), p. 121010
.13.
Jin
, X.
, Keer
, L. M.
, and Wang
, Q.
, 2011
, “A Closed-Form Solution for the Eshelby Tensor and the Elastic Field Outside an Elliptic Cylindrical Inclusion
,” ASME J. Appl. Mech.
, 78
(3
), p. 031009
.14.
Ju
, J. W.
, and Sun
, L. Z.
, 1999
, “A Novel Formulation for the Exterior-Point Eshelby's Tensor of an Ellipsoidal Inclusion
,” ASME J. Appl. Mech.
, 66
(2
), pp. 570
–574
.15.
Jin
, X.
, Wang
, Z.
, Zhou
, Q.
, Keer
, L. M.
, and Wang
, Q.
, 2014
, “On the Solution of an Elliptical Inhomogeneity in Plane Elasticity by the Equivalent Inclusion Method
,” J. Elasticity
, 114
(1
), pp. 1
–18
.16.
Maugis
, D.
, 2000
, Contact, Adhesion and Rupture of Elastic Solids
, Springer
, Berlin
.Copyright © 2017 by ASME
You do not currently have access to this content.