Traction between adsorbed islands and the substrate is commonly seen in both living and material systems: deposited material gathers into islands at the early stage of polycrystalline film deposition and generates stress due to lattice mismatch, cells exert cellular traction to extracellular matrix to probe their surrounding microenvironment in vivo, and so on. The traction between these islands and the substrate can result in perceivable macroscopic deformation in the substrate and may be measurable if the substrate is a cantilever beam. However, currently broadly used Stoney equation is incapable of handling such boundary condition. In this paper, we give the closed-form expression on the resulted curvature in substrate beams by distributed tractions. Such a relationship could be employed to monitor the stress evolution during thin film deposition, to quantify the stress level of cell traction as cells adhere to cantilever beams, and other related mechanical systems like charging–discharging induced stress in island-patterned electrode films. Moreover, we found that follower traction induced by an array of islands could lead to negative curvature. It shields light on the early stage compressive stress during polycrystalline film deposition.

References

1.
Zhang
,
Z.
, and
Lagally
,
M. G.
,
1997
, “
Atomistic Processes in the Early Stages of Thin-Film Growth
,”
Science
,
276
(
5311
), pp.
377
383
.
2.
Thompson
,
C. V.
, and
Carel
,
R.
,
1996
, “
Stress and Grain Growth in Thin Films
,”
J. Mech. Phys. Solids
,
44
(
5
), pp.
657
673
.
3.
Spaepen
,
F.
,
2000
, “
Interfaces and Stresses in Thin Films
,”
Acta Mater.
,
48
(
1
), pp.
31
42
.
4.
Cammarata
,
R. C.
,
1994
, “
Surface and Interface Stress Effects in Thin Films
,”
Prog. Surf. Sci.
,
46
(
1
), pp.
1
38
.
5.
Stoney
,
G. G.
,
1909
, “
The Tension of Metallic Films Deposited by Electrolysis
,”
Proc. R. Soc. London Ser. A
,
82
(
553
), pp.
172
175
.
6.
Freund
,
L. B.
, and
Suresh
,
S.
,
2004
,
Thin Film Materials: Stress, Defect Formation and Surface Evolution
,
Cambridge University Press
,
Cambridge, UK
.
7.
Chason
,
E.
, and
Floro
,
J.
,
1996
, “
Measurements of Stress Evolution During Thin Film Deposition
,”
MRS Proc.
,
428
, p.
499
.
8.
Floro
,
J. A.
,
Chason
,
E.
,
Cammarata
,
R. C.
, and
Srolovitz
,
D. J.
,
2002
, “
Physical Origins of Intrinsic Stresses in Volmer–Weber Thin Films
,”
MRS Bull.
,
27
(
1
), pp.
19
25
.
9.
Tello
,
J. S.
, and
Bower
,
A. F.
,
2008
, “
Numerical Simulations of Stress Generation and Evolution in Volmer–Weber Thin Films
,”
J. Mech. Phys. Solids
,
56
(
8
), pp.
2727
2747
.
10.
Cammarata
,
R.
,
Trimble
,
T.
, and
Srolovitz
,
D.
,
2000
, “
Surface Stress Model for Intrinsic Stresses in Thin Films
,”
J. Mater. Res.
,
15
(
11
), pp.
2468
2474
.
11.
Rajamani
,
A.
,
Sheldon
,
B. W.
,
Chason
,
E.
, and
Bower
,
A. F.
,
2002
, “
Intrinsic Tensile Stress and Grain Boundary Formation During Volmer–Weber Film Growth
,”
Appl. Phys. Lett.
,
81
(
7
), pp.
1204
1206
.
12.
Tello
,
J. S.
,
Bower
,
A. F.
,
Chason
,
E.
, and
Sheldon
,
B. W.
,
2007
, “
Kinetic Model of Stress Evolution During Coalescence and Growth of Polycrystalline Thin Films
,”
Phys. Rev. Lett.
,
98
(
21
), p.
216104
.
13.
Sheldon
,
B. W.
,
Bhandari
,
A.
,
Bower
,
A. F.
,
Raghavan
,
S.
,
Weng
,
X.
, and
Redwing
,
J. M.
,
2007
, “
Steady-State Tensile Stresses During the Growth of Polycrystalline Films
,”
Acta Mater.
,
55
(
15
), pp.
4973
4982
.
14.
Chason
,
E.
,
Shin
,
J.
,
Chen
,
C.-H.
,
Engwall
,
A.
,
Miller
,
C.
,
Hearne
,
S.
, and
Freund
,
L.
,
2014
, “
Growth of Patterned Island Arrays to Identify Origins of Thin Film Stress
,”
J. Appl. Phys.
,
115
(
12
), p.
123519
.
15.
Chason
,
E.
,
Engwall
,
A.
,
Miller
,
C.
,
Chen
,
C.-H.
,
Bhandari
,
A.
,
Soni
,
S.
,
Hearne
,
S.
,
Freund
,
L.
, and
Sheldon
,
B.
,
2015
, “
Stress Evolution During Growth of 1-D Island Arrays: Kinetics and Length Scaling
,”
Scr. Mater.
,
97
, pp.
33
36
.
16.
Sethuraman
,
V. A.
,
Chon
,
M. J.
,
Shimshak
,
M.
,
Srinivasan
,
V.
, and
Guduru
,
P. R.
,
2010
, “
In Situ Measurements of Stress Evolution in Silicon Thin Films During Electrochemical Lithiation and Delithiation
,”
J. Power Sources
,
195
(
15
), pp.
5062
5066
.
17.
Pharr
,
M.
,
Suo
,
Z.
, and
Vlassak
,
J. J.
,
2013
, “
Measurements of the Fracture Energy of Lithiated Silicon Electrodes of Li-Ion Batteries
,”
Nano Lett.
,
13
(
11
), pp.
5570
5577
.
18.
Bucci
,
G.
,
Nadimpalli
,
S. P.
,
Sethuraman
,
V. A.
,
Bower
,
A. F.
, and
Guduru
,
P. R.
,
2014
, “
Measurement and Modeling of the Mechanical and Electrochemical Response of Amorphous Si Thin Film Electrodes During Cyclic Lithiation
,”
J. Mech. Phys. Solids
,
62
, pp.
276
294
.
19.
Sethuraman
,
V. A.
,
Chon
,
M. J.
,
Shimshak
,
M.
,
Van Winkle
,
N.
, and
Guduru
,
P. R.
,
2010
, “
In Situ Measurement of Biaxial Modulus of Si Anode for Li-Ion Batteries
,”
Electrochem. Commun.
,
12
(
11
), pp.
1614
1617
.
20.
Soni
,
S. K.
,
Sheldon
,
B. W.
,
Xiao
,
X.
,
Verbrugge
,
M. W.
,
Dongjoon
,
A.
,
Haftbaradaran
,
H.
, and
Huajian
,
G.
,
2011
, “
Stress Mitigation During the Lithiation of Patterned Amorphous Si Islands
,”
J. Electrochem. Soc.
,
159
(
1
), pp.
A38
A43
.
21.
Xiao
,
X.
,
Liu
,
P.
,
Verbrugge
,
M.
,
Haftbaradaran
,
H.
, and
Gao
,
H.
,
2011
, “
Improved Cycling Stability of Silicon Thin Film Electrodes Through Patterning for High Energy Density Lithium Batteries
,”
J. Power Sources
,
196
(
3
), pp.
1409
1416
.
22.
Haftbaradaran
,
H.
,
Xiao
,
X.
,
Verbrugge
,
M. W.
, and
Gao
,
H.
,
2012
, “
Method to Deduce the Critical Size for Interfacial Delamination of Patterned Electrode Structures and Application to Lithiation of Thin-Film Silicon Islands
,”
J. Power Sources
,
206
, pp.
357
366
.
23.
He
,
Y.
,
Yu
,
X.
,
Li
,
G.
,
Wang
,
R.
,
Li
,
H.
,
Wang
,
Y.
,
Gao
,
H.
, and
Huang
,
X.
,
2012
, “
Shape Evolution of Patterned Amorphous and Polycrystalline Silicon Microarray Thin Film Electrodes Caused by Lithium Insertion and Extraction
,”
J. Power Sources
,
216
, pp.
131
138
.
24.
Kumar
,
R.
,
Tokranov
,
A.
,
Sheldon
,
B. W.
,
Xiao
,
X.
,
Huang
,
Z.
,
Li
,
C.
, and
Mueller
,
T.
,
2016
, “
In Situ and Operando Investigations of Failure Mechanisms of the Solid Electrolyte Interphase on Silicon Electrodes
,”
ACS Energy Lett.
,
1
(
4
), pp.
689
697
.
25.
Discher
,
D. E.
,
Janmey
,
P.
, and
Wang
,
Y. L.
,
2005
, “
Tissue Cells Feel and Respond to the Stiffness of Their Substrate
,”
Science
,
310
(
5751
), pp.
1139
1143
.
26.
Kubow
,
K. E.
,
Vukmirovic
,
R.
,
Zhe
,
L.
,
Klotzsch
,
E.
,
Smith
,
M. L.
,
Gourdon
,
D.
,
Luna
,
S.
, and
Vogel
,
V.
,
2015
, “
Mechanical Forces Regulate the Interactions of Fibronectin and Collagen I in Extracellular Matrix
,”
Nat. Commun.
,
6
, p.
8026
.
27.
Harris
,
A. K.
,
Stopak
,
D.
, and
Wild
,
P.
,
1981
, “
Fibroblast Traction as a Mechanism for Collagen Morphogenesis
,”
Nature
,
290
(
5803
), pp.
249
251
.
28.
Rape
,
A. D.
,
Guo
,
W. H.
, and
Wang
,
Y. L.
,
2011
, “
The Regulation of Traction Force in Relation to Cell Shape and Focal Adhesions
,”
Biomaterials
,
32
(
8
), pp.
2043
2051
.
29.
Harris
,
A. K.
,
Wild
,
P.
, and
Stopak
,
D.
,
1980
, “
Silicone Rubber Substrata: New Wrinkle in the Study of Cell Locomotion
,”
Science
,
208
(
4440
), pp.
177
179
.
30.
Lee
,
J.
,
Leonard
,
M.
,
Oliver
,
T.
,
Ishihara
,
A.
, and
Jacobson
,
K.
,
1994
, “
Traction Forces Generated by Locomoting Keratocytes
,”
J. Cell Biol.
,
127
(
6
), pp.
1957
1964
.
31.
Dembo
,
M.
, and
Wang
,
Y. L.
,
1999
, “
Stresses at the Cell-to-Substrate Interface During Locomotion of Fibroblasts
,”
Biophys. J.
,
76
(
4
), pp.
2307
2316
.
32.
Tan
,
J. L.
,
Tien
,
J.
,
Pirone
,
D. M.
,
Gray
,
D. S.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
,
2003
, “
Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force
,”
Proc. Natl. Acad. Sci. U.S.A.
,
100
(
4
), pp.
1484
1489
.
33.
He
,
S. J.
,
Su
,
Y. W.
,
Ji
,
B. H.
, and
Gao
,
H. J.
,
2014
, “
Some Basic Questions on Mechanosensing in Cell-Substrate Interaction
,”
J. Mech. Phys. Solids
,
70
, pp.
116
135
.
34.
Mertz
,
A. F.
,
Banerjee
,
S.
,
Che
,
Y.
,
German
,
G. K.
,
Xu
,
Y.
,
Hyland
,
C.
,
Marchetti
,
M. C.
,
Horsley
,
V.
, and
Dufresne
,
E. R.
,
2012
, “
Scaling of Traction Forces With the Size of Cohesive Cell Colonies
,”
Phys. Rev. Lett.
,
108
(
19
), p.
198101
.
35.
Gardel
,
M. L.
,
Sabass
,
B.
,
Ji
,
L.
,
Danuser
,
G.
,
Schwarz
,
U. S.
, and
Waterman
,
C. M.
,
2008
, “
Traction Stress in Focal Adhesions Correlates Biphasically With Actin Retrograde Flow Speed
,”
J. Cell Biol.
,
183
(
6
), pp.
999
1005
.
36.
Timoshenko
,
S. P.
, and
Goodier
,
J.
,
1970
,
Theory of Elasticity
,
McGraw Hill
,
New York
.
37.
Braun
,
M.
, and
Golubitsky
,
M.
,
1983
,
Differential Equations and Their Applications
,
Springer
, New York.
38.
Thornton
,
J. A.
, and
Hoffman
,
D.
,
1989
, “
Stress-Related Effects in Thin Films
,”
Thin Solid Films
,
171
(
1
), pp.
5
31
.
39.
Shull
,
A. L.
, and
Spaepen
,
F.
,
1996
, “
Measurements of Stress During Vapor Deposition of Copper and Silver Thin Films and Multilayers
,”
J. Appl. Phys.
,
80
(
11
), pp.
6243
6256
.
40.
Haftbaradaran
,
H.
,
Soni
,
S. K.
,
Sheldon
,
B. W.
,
Xiao
,
X.
, and
Gao
,
H.
,
2012
, “
Modified Stoney Equation for Patterned Thin Film Electrodes on Substrates in the Presence of Interfacial Sliding
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031018
.
You do not currently have access to this content.