Although Lagrangian and Hamiltonian analytical mechanics represent perhaps the most remarkable expressions of the dynamics of a mechanical system, these approaches also come with limitations. In particular, there is inherent difficulty to represent dissipative processes, and the restrictions placed on end point variations are not consistent with the definition of initial value problems. The present work on the time-domain response of poroelastic media extends the recent formulations of the mixed convolved action (MCA). The action in this proposed approach is formed by replacing the inner product in Hamilton's principle with a time convolution. As a result, dissipative processes can be represented in a natural way and the required constraints on the variations are consistent with the actual initial and boundary conditions of the problem. The variational formulation developed here employs temporal impulses of velocity, effective stress, pore pressure, and pore fluid mass flux as primary variables in this mixed approach, which also uses convolution operators and fractional calculus to achieve the desired characteristics. The resulting MCA is formulated directly in the time domain to develop a new stationary principle for poroelasticity, which applies to dynamic poroelastic and quasi-static consolidation problems alike. By discretizing the MCA using the finite element method over both space and time, new computational mechanics formulations are developed. Here, this formulation is implemented for the two-dimensional case, and several numerical examples of dynamic poroelasticity are presented to validate the approach.

References

1.
Hamilton
,
W. R.
,
1834
, “
On a General Method in Dynamics
,”
Philos. Trans. R. Soc. London
,
124
(
0
), pp.
247
308
.
2.
Hamilton
,
W. R.
,
1835
, “
Second Essay on a General Method in Dynamics
,”
Philos. Trans. R. Soc. London
,
125
(
0
), pp.
95
144
.
3.
Lanczos
,
C.
,
1949
,
The Variational Principles of Mechanics
,
University of Toronto Press
,
Toronto, ON, Canada
.
4.
Goldstein
,
H.
,
1950
,
Classical Mechanics
,
Addison-Wesley Press
,
Cambridge, MA
.
5.
Rayleigh
,
J. W. S.
,
1877
,
The Theory of Sound
, 2nd ed., Vol.
I
,
Dover Publications
,
New York
.
6.
Rayleigh
,
J. W. S.
,
1877
,
The Theory of Sound
, 2nd ed., Vol.
II
,
Dover Publications
,
New York
.
7.
Biot
,
M. A.
,
1955
, “
Variational Principles in Irreversible Thermodynamics With Application to Viscoelasticity
,”
Phys. Rev.
,
97
(
6
), pp.
1463
1469
.
8.
Biot
,
M. A.
,
1957
, “
New Methods in Heat Flow Analysis With Application to Flight Structures
,”
J. Aeronaut. Sci.
,
24
(
12
), pp.
857
873
.
9.
Marsden
,
J. E.
, and
Ratiu
,
T. S.
,
1994
,
Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems
,
Springer-Verlag
,
New York
.
10.
Gurtin
,
M. E.
,
1963
, “
Variational Principles in the Linear Theory of Viscoelasticity
,”
Arch. Ration. Mech. Anal.
,
13
(
1
), pp.
179
191
.
11.
Gurtin
,
M. E.
,
1964
, “
Variational Principles for Linear Initial-Value Problems
,”
Q. Appl. Math.
,
22
, pp.
252
256
.
12.
Gurtin
,
M. E.
,
1964
, “
Variational Principles for Linear Elastodynamics
,”
Arch. Ration. Mech. Anal.
,
16
(1), pp.
34
50
.
13.
Tonti
,
E.
,
1973
, “
On the Variational Formulation for Linear Initial Value Problems
,”
Ann. Mat. Pura Appl.
,
95
(1), pp.
331
360
.
14.
Tonti
,
E.
,
1982
, “
A General Solution of the Inverse Problem of the Calculus of Variations
,”
Hadronic J.
,
5
, pp.
1404
1450
.
15.
Tonti
,
E.
,
1984
, “
Variational Formulation for Every Nonlinear Problem
,”
Int. J. Solids Struct.
,
22
(11–12), pp.
1343
1371
.
16.
Tonti
,
E.
,
1985
, “
Inverse Problem: Its General Solution
,”
Differential Geometry, Calculus of Variations and Their Applications
,
G. M.
Rassias
, and
T. M.
Rassias
, eds.,
Marcel Dekker
,
New York
.
17.
Oden
,
J. T.
, and
Reddy
,
J. N.
,
1983
,
Variational Methods in Theoretical Mechanics
,
Springer-Verlag
,
Berlin
.
18.
Dargush
,
G. F.
, and
Kim
,
J.
,
2012
, “
Mixed Convolved Action
,”
Phys. Rev. E
,
85
(
6
), p.
066606
.
19.
Dargush
,
G. F.
,
2012
, “
Mixed Convolved Action for Classical and Fractional-Derivative Dissipative Dynamical Systems
,”
Phys. Rev. E
,
86
(
6
), p.
066606
.
20.
Dargush
,
G. F.
,
Darrall
,
B. T.
,
Kim
,
J.
, and
Apostolakis
,
G.
,
2015
, “
Mixed Convolved Action Principles in Linear Continuum Dynamics
,”
Acta Mech.
,
226
(
12
), pp.
4111
4137
.
21.
Dargush
,
G. F.
,
Apostolakis
,
G.
,
Darrall
,
B. T.
, and
Kim
,
J.
, “
Mixed Convolved Action Variational Principles in Heat Diffusion
,”
Int. J. Heat Mass Transfer
,
100
, pp.
790
799
.
22.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
(
2
), pp.
155
164
.
23.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
168
178
.
24.
Biot
,
M. A.
,
1962
, “
Mechanics of Deformation and Acoustic Propagation in Porous Media
,”
J. Appl. Phys.
,
33
(
4
), pp.
1482
1498
.
25.
Biot
,
M. A.
,
1962
, “
Generalized Theory of Acoustic Propagation in Porous Dissipative Media
,”
J. Acoust. Soc. Am.
,
34
, pp.
1254
1264
.
26.
Morse
,
P. M.
, and
Feshbach
,
H.
,
1953
,
Methods of Theoretical Physics
,
McGraw-Hill
,
New York
.
27.
Riewe
,
F.
,
1996
, “
Nonconservative Lagrangian and Hamiltonian Mechanics
,”
Phys. Rev. E
,
53
(
2
), pp.
1890
1899
.
28.
Riewe
,
F.
,
1997
, “
Mechanics With Fractional Derivatives
,”
Phys. Rev. E
,
55
(
3
), pp.
3581
3592
.
29.
Kaufman
,
A. N.
,
1984
, “
Dissipative Hamiltonian Systems: A Unifying Principle
,”
Phys. Lett. A
,
100
(
8
), pp.
419
422
.
30.
Morrison
,
P. J.
,
1984
, “
Bracket Formulation for Irreversible Classical Fields
,”
Phys. Lett. A
,
100
(
8
), pp.
423
427
.
31.
Grmela
,
M.
,
1984
, “
Bracket Formulation of Dissipative Fluid Mechanics Equations
,”
Phys. Lett. A
,
102
(
8
), pp.
355
358
.
32.
Beris
,
A. N.
, and
Edwards
,
B. J.
,
1994
,
Thermodynamics of Flowing Systems With Internal Microstructure
,
Oxford University Press
,
New York
.
33.
Grmela
,
M.
, and
Ottinger
,
H. C.
,
1997
, “
Dynamics and Thermodynamics of Complex Fluids. I. Development of a General Formalism
,”
Phys. Rev. E
,
56
(
6
), pp.
6620
6632
.
34.
Ottinger
,
H. C.
, and
Grmela
,
M.
,
1997
, “
Dynamics and Thermodynamics of Complex Fluids. II. Illustrations of a General Formalism
,”
Phys. Rev. E
,
56
(
6
), pp.
6633
6655
.
35.
Grmela
,
M.
,
2014
, “
Contact Geometry of Mesoscopic Thermodynamics and Dynamics
,”
Entropy
,
16
(
3
), pp.
1652
1686
.
36.
Grmela
,
M.
,
2015
, “
Geometry of Multiscale Nonequilibrium Thermodynamics
,”
Entropy
,
17
(
9
), pp.
5938
5964
.
37.
Apostolakis
,
G.
, and
Dargush
,
G. F.
,
2013
, “
Mixed Variational Principles for Dynamic Response of Thermoelastic and Poroelastic Continua
,”
Int. J. Solids Struct.
,
50
(
5
), pp.
642
650
.
38.
Predeleanu
,
M.
,
1984
, “
Development of Boundary Element Method to Dynamic Problems for Porous Media
,”
Appl. Math. Modell.
,
8
(
6
), pp.
378
382
.
39.
Manolis
,
G. D.
, and
Beskos
,
D. E.
,
1989
, “
Integral Formulation and Fundamental Solutions of Dynamic Poroelasticity and Thermoelasticity
,”
Acta Mech.
,
76
, pp.
89
104
.
40.
Simon
,
B. R.
,
Zienkiewicz
,
O. C.
, and
Paul
,
D. K.
, “
An Analytical Solution for the Transient Response of Saturated Porous Elastic Solids
,”
Int. J. Numer. Anal. Methods Geomech.
,
8
(
4
), pp.
381
398
.
41.
Sivaselvan
,
M. V.
, and
Reinhorn
,
A. M.
,
2006
, “
Lagrangian Approach to Structural Collapse Simulation
,”
ASCE J. Eng. Mech.
,
132
(
8
), pp.
795
805
.
42.
Sivaselvan
,
M. V.
,
Lavan
,
O.
,
Dargush
,
G. F.
,
Kurino
,
H.
,
Hyodo
,
Y.
,
Fukuda
,
R.
,
Sato
,
K.
,
Apostolakis
,
G.
, and
Reinhorn
,
A. M.
,
2009
, “
Numerical Collapse Simulation of Large-Scale Structural Systems Using an Optimization-Based Algorithm
,”
Earthquake Eng. Struct. Dyn.
,
38
(
5
), pp.
655
677
.
43.
Apostolakis
,
G.
, and
Dargush
,
G. F.
,
2012
, “
Mixed Lagrangian Formulation for Linear Thermoelastic Response of Structures
,”
ASCE J. Eng. Mech.
,
138
(
5
), pp.
508
518
.
44.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Academic Press
,
New York
.
45.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives
,
Gordon and Breach Science Publishers
,
Switzerland
.
46.
Darrall
,
B. T.
, and
Dargush
,
G. F.
,
2015
, “
Mixed Convolved Action Principles for Dynamics of Linear Poroelastic Continua
,”
ASME
Paper No. IMECE2015-52728.
47.
Kane
,
C.
,
Marsden
,
J. E.
, and
Ortiz
,
M.
,
1999
, “
Symplectic-Energy-Momentum Preserving Variational Integrators
,”
J. Math. Phys.
,
40
(7), pp.
3357
3371
.
48.
Kane
,
C.
,
Marsden
,
J. E.
,
Ortiz
,
M.
, and
West
,
M.
,
2000
, “
Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems
,”
Int. J. Numer. Methods Eng.
,
49
(
10
), pp.
1295
1325
.
49.
Marsden
,
J. E.
, and
West
,
M.
,
2001
, “
Discrete Mechanics and Variational Integrators
,”
Acta Numer.
,
10
, pp.
357
514
.
50.
Bathe
,
K. J.
,
1996
,
Finite Element Procedures
,
Prentice Hall
,
Englewood Cliffs, NJ
.
51.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2013
,
The Finite Element Method: Its Basis and Fundamentals
,
Butterworth-Heinemann
,
Oxford, UK
.
52.
Chen
,
J.
, and
Dargush
,
G. F.
,
1995
, “
Boundary Element Method for Poroelastic and Thermoelastic Analyses
,”
Int. J. Solids Struct.
,
32
(
15
), pp.
2257
2278
.
You do not currently have access to this content.