The purpose of this paper is to develop the motion equations of a flexible spherical shell rolling without slip on a flat surface. The motivation for this paper stems from tumbleweed rovers, which are envisioned to roll, deform, and bounce on the Martian surface due to the flexible nature of their thin walls. The motion equations are derived using a constrained Lagrangian approach and capture the rolling without slip nonholonomic constraint. Numerical simulations are performed to validate the dynamic model developed and to investigate the effect of the flexibility of the spherical shell on its trajectory.

References

1.
Hartl
,
A. E.
, and
Mazzoleni
,
A. P.
,
2008
, “
Parametric Study of Spherical Rovers Crossing a Valley
,”
J. Guid., Control, Dyn.
,
31
(
3
), pp.
775
779
.
2.
Behar
,
A.
,
Carsey
,
F.
,
Matthews
,
J.
, and
Jones
,
J.
,
2004
, “
An Antarctic Deployment of the NASA/JPL Tumbleweed Polar Rover
,”
Sixth Biannual World Automation Congress Robotics: Trends, Principles, and Applications
,
ISORA
, Seville, Spain, June 28–July 1, pp.
453
460
.
3.
Kuhlman
,
K. R.
,
Behar
,
A. E.
,
Jones
,
J.
,
Boston
,
P.
,
Antol
,
J.
,
Hajos
,
G.
,
Kelliher
,
W.
,
Coleman
,
M.
,
Crawford
,
R.
,
Rothschild
,
L.
,
Buehler
,
M.
,
Bearman
,
G.
, and
Wilson
,
D.
,
2010
, “
Tumbleweed: A New Paradigm for Surveying Mars for In Situ Resources
,”
12th International Conference on Engineering, Science, Construction, and Operations in Challenging Environments—Earth and Space
, Honolulu, HI, Mar. 14–17, pp.
1502
1512
.
4.
Hartl
,
A. E.
, and
Mazzoleni
,
A. P.
,
2010
, “
Dynamic Modeling of a Wind-Driven Tumbleweed Rover Including Atmospheric Effects
,”
J. Spacecr. Rockets
,
47
(
3
), pp.
493
502
.
5.
Townsend
,
J.
,
Seibert
,
M.
,
Belluta
,
P.
,
Ferguson
,
E.
,
Forgette
,
D.
,
Herman
,
J.
,
Justice
,
H.
,
Keuneke
,
M.
,
Sosland
,
R.
,
Stroupe
,
A.
, and
Wright
,
J.
,
2014
, “
Mars Exploration Rovers 2004–2013: Evolving Operational Tactics Driven by Aging Robotic Systems
,”
AIAA
Paper No. 2014-1884.
6.
Forbes
,
J. R.
,
Barfoot
,
T. D.
, and
Damaren
,
C. J.
,
2010
, “
Dynamic Modeling and Stability Analysis of a Power-Generating Tumbleweed Rover
,”
Multibody Syst. Dyn.
,
24
(
4
), pp.
413
439
.
7.
Basic
,
G.
,
2010
, “
Power-Scavenging Tumbleweed Rover
,”
Master's thesis
, University of Toronto, Toronto, ON, Canada.
8.
Hogan
,
F. R.
,
Forbes
,
J. R.
, and
Barfoot
,
T. D.
,
2014
, “
Rolling Stability of a Power-Generating Tumbleweed Rover
,”
J. Spacecr. Rockets
,
51
(
67
), pp.
1895
1906
.
9.
Flick
,
J. J.
, and
Toniolo
,
M. D.
,
2005
, “
Preliminary Dynamic Feasibility and Analysis of a Spherical, Wind-Driven (Tumbleweed), Martian Rover
,”
AIAA
Paper No. 2005-0250.
10.
Yu
,
T.
,
Sun
,
H.
,
Jia
,
Q.
,
Zhang
,
Y.
, and
Zhao
,
W.
,
2013
, “
Stabilization and Control of a Spherical Robot on an Inclined Plane
,”
Res. J. Appl. Sci., Eng. Technol.
,
5
(
6
), pp.
2289
2296
.
11.
Li
,
T.
,
Wang
,
Z.
, and
Ji
,
Z.
,
2012
, “
Dynamic Modeling and Simulation of the Internal- and External-Driven Spherical Robot
,”
J. Aerosp. Eng.
,
25
(
4
), pp.
636
640
.
12.
Kayacana
,
E.
,
Bayraktaroglua
,
Z.
, and
Saeysa
,
W.
,
2012
, “
Modeling and Control of a Spherical Rolling Robot: A Decoupled Dynamics Approach
,”
Robotica
,
30
(
4
), pp.
671
680
.
13.
Balandin
,
D. V.
,
Komarov
,
M. A.
, and
Osipov
,
G. V.
,
2013
, “
A Motion Control for a Spherical Robot With Pendulum Drive
,”
J. Comput. Syst. Sci. Int.
,
52
(
4
), pp.
650
663
.
14.
Schroll
,
G. C.
,
2010
, “
Dynamic Model of a Spherical Robot From First Principles
,”
Master's thesis
, Colorado State University, Fort Collins, CO.
15.
Nelson
,
F. C.
,
1962
, “
In-Plane Vibration of a Simply Supported Circular Ring Segment
,”
Int. J. Mech. Sci.
,
4
(
6
), pp.
517
527
.
16.
Wang
,
T. M.
,
1975
, “
Effect of Variable Curvature on Fundamental Frequency of Clamped Parabolic Arcs
,”
J. Sound Vib.
,
41
(
2
), pp.
247
251
.
17.
Chen
,
P.-T.
, and
Ginsberg
,
J. H.
,
1992
, “
Modal Properties and Eigenvalue Veering Phenomena in the Axisymmetric Vibration of Spheroidal Shells
,”
J. Acoust. Soc. Am.
,
92
(
3
), pp.
1499
1508
.
18.
Charpie
,
J. P.
, and
Burroughs
,
C. B.
,
1993
, “
An Analytic Model for the Three In-Plane Vibration of Beams of Variable Curvature and Depth
,”
J. Acoust. Soc. Am.
,
92
(
2
), pp.
866
879
.
19.
Soedel
,
W.
,
2004
,
Vibrations of Shells and Plates
,
Marcel Dekker
,
New York
.
20.
Long
,
C. F.
,
1969
, “
Frequency Analysis of Complete Spherical Shells
,”
J. Eng. Mech.
,
95
(
3
), pp.
505
518
.
21.
Singh
,
V. P.
, and
Mirza
,
S.
,
1985
, “
Asymmetric Modes and Associated Eigenvalues for Spherical Shells
,”
ASME J. Pressure Vessel Technol.
,
107
(
1
), pp.
77
82
.
22.
Gautham
,
B. P.
, and
Ganesan
,
N.
,
1992
, “
Free Vibration Analysis of Thick Spherical Shells
,”
Comput. Struct.
,
45
(
2
), pp.
307
313
.
23.
Sathyamoorthy
,
M.
,
1994
, “
Vibrations of Moderately Thick Shallow Spherical Shells at Large Amplitudes
,”
J. Sound Vib.
,
172
(
1
), pp.
63
70
.
24.
Lee
,
Y.-S.
,
Yang
,
M.-S.
,
Kim
,
H.-S.
, and
Kim
,
J.-H.
,
2002
, “
A Study on the Free Vibration of the Joined Cylindrical Spherical Shell Structures
,”
Comput. Struct.
,
80
(
24–70
), pp.
2405
2414
.
25.
Ye
,
T.
,
Jin
,
G.
,
Chen
,
Y.
, and
Shi
,
S.
,
2014
, “
A Unified Formulation for Vibration Analysis of Open Shells With Arbitrary Boundary Conditions
,”
Int. J. Mech. Sci.
,
81
, pp.
42
59
.
26.
Chena
,
W. Q.
, and
Ding
,
H. J.
,
1999
, “
Natural Frequencies of a Fluid-Filled Anisotropic Spherical Shell
,”
J. Acoust. Soc. Am.
,
105
(
1
), pp.
174
182
.
27.
Choi
,
S.-Y.
, and
Kim
,
J.-H.
,
2011
, “
Natural Frequency Split Estimation for Inextensional Vibration of Imperfect Hemispherical Shell
,”
J. Sound Vib.
,
330
(
9
), pp.
2094
2106
.
28.
Al-Jumaily
,
A. M.
, and
Najim
,
F. M.
,
1997
, “
An Approximation to the Vibrations of Oblate Spheroidal Shells
,”
J. Sound Vib.
,
204
(
4
), pp.
561
574
.
29.
Angeles
,
J.
, and
Sasha
,
S. K.
,
1991
, “
Dynamics of Nonholonomic Mechanical Systems Using a Natural Orthogonal Complement
,”
ASME J. Appl. Mech.
,
58
(
1
), pp.
238
243
.
30.
Laulusa
,
A.
, and
Bauchau
,
O. A.
,
2008
, “
Review of Classical Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011004
.
31.
Hughes
,
P. C.
,
2004
,
Spacecraft Attitude Dynamics
, 2nd ed.,
Dover
,
New York
.
32.
Kreyszig
,
E.
,
2011
,
Advanced Engineering Mathematics
, 10th ed.,
Wiley
,
Jefferson City, MO
.
33.
Schaub
,
H.
, and
Junkins
,
J. L.
,
2009
,
Analytical Mechanics of Space Systems
, 2nd ed.,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
34.
Winfrey
,
R. C.
,
1972
, “
Dynamic Analysis of Elastic Link Mechanisms by Reduction of Coordinates
,”
ASME J. Eng. Ind.
,
94
(
2
), pp.
577
581
.
35.
Turcic
,
D. A.
, and
Midha
,
A.
,
1984
, “
Dynamic Analysis of Elastic Mechanism Systems—Part I: Applications
,”
ASME J. Dyn. Syst., Meas., Control
,
106
(
4
), pp.
249
254
.
36.
Asada
,
H.
,
Ma
,
Z. D.
, and
Tokumaru
,
H.
,
1990
, “
Inverse Dynamics of Flexible Robot Arms: Modeling and Computation for Trajectory Control
,”
ASME J. Dyn. Syst., Meas., Control
,
112
(
2
), pp.
177
185
.
37.
Shabana
,
A. A.
,
1997
, “
Flexible Multibody Dynamics: Review of Past and Recent Developments
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
189
222
.
38.
Rao
,
A. V.
,
2006
,
Dynamics of Particles and Rigid Bodies
,
Cambridge University Press
,
Cambridge, UK
, pp.
106
110
.
39.
Hogan
,
F. R.
, and
Forbes
,
J. R.
,
2015
, “
Modeling of a Flexible Circular Ring
,”
ASME J. Appl. Mech.
,
82
(11), p. 111003.
You do not currently have access to this content.