The purpose of this paper is to develop the motion equations of a flexible spherical shell rolling without slip on a flat surface. The motivation for this paper stems from tumbleweed rovers, which are envisioned to roll, deform, and bounce on the Martian surface due to the flexible nature of their thin walls. The motion equations are derived using a constrained Lagrangian approach and capture the rolling without slip nonholonomic constraint. Numerical simulations are performed to validate the dynamic model developed and to investigate the effect of the flexibility of the spherical shell on its trajectory.
Issue Section:
Research Papers
References
1.
Hartl
, A. E.
, and Mazzoleni
, A. P.
, 2008
, “Parametric Study of Spherical Rovers Crossing a Valley
,” J. Guid., Control, Dyn.
, 31
(3
), pp. 775
–779
.2.
Behar
, A.
, Carsey
, F.
, Matthews
, J.
, and Jones
, J.
, 2004
, “An Antarctic Deployment of the NASA/JPL Tumbleweed Polar Rover
,” Sixth Biannual World Automation Congress Robotics: Trends, Principles, and Applications
, ISORA
, Seville, Spain, June 28–July 1, pp. 453
–460
.3.
Kuhlman
, K. R.
, Behar
, A. E.
, Jones
, J.
, Boston
, P.
, Antol
, J.
, Hajos
, G.
, Kelliher
, W.
, Coleman
, M.
, Crawford
, R.
, Rothschild
, L.
, Buehler
, M.
, Bearman
, G.
, and Wilson
, D.
, 2010
, “Tumbleweed: A New Paradigm for Surveying Mars for In Situ Resources
,” 12th International Conference on Engineering, Science, Construction, and Operations in Challenging Environments—Earth and Space
, Honolulu, HI, Mar. 14–17, pp. 1502
–1512
.4.
Hartl
, A. E.
, and Mazzoleni
, A. P.
, 2010
, “Dynamic Modeling of a Wind-Driven Tumbleweed Rover Including Atmospheric Effects
,” J. Spacecr. Rockets
, 47
(3
), pp. 493
–502
.5.
Townsend
, J.
, Seibert
, M.
, Belluta
, P.
, Ferguson
, E.
, Forgette
, D.
, Herman
, J.
, Justice
, H.
, Keuneke
, M.
, Sosland
, R.
, Stroupe
, A.
, and Wright
, J.
, 2014
, “Mars Exploration Rovers 2004–2013: Evolving Operational Tactics Driven by Aging Robotic Systems
,” AIAA
Paper No. 2014-1884.6.
Forbes
, J. R.
, Barfoot
, T. D.
, and Damaren
, C. J.
, 2010
, “Dynamic Modeling and Stability Analysis of a Power-Generating Tumbleweed Rover
,” Multibody Syst. Dyn.
, 24
(4
), pp. 413
–439
.7.
Basic
, G.
, 2010
, “Power-Scavenging Tumbleweed Rover
,” Master's thesis
, University of Toronto, Toronto, ON, Canada.8.
Hogan
, F. R.
, Forbes
, J. R.
, and Barfoot
, T. D.
, 2014
, “Rolling Stability of a Power-Generating Tumbleweed Rover
,” J. Spacecr. Rockets
, 51
(67
), pp. 1895
–1906
.9.
Flick
, J. J.
, and Toniolo
, M. D.
, 2005
, “Preliminary Dynamic Feasibility and Analysis of a Spherical, Wind-Driven (Tumbleweed), Martian Rover
,” AIAA
Paper No. 2005-0250.10.
Yu
, T.
, Sun
, H.
, Jia
, Q.
, Zhang
, Y.
, and Zhao
, W.
, 2013
, “Stabilization and Control of a Spherical Robot on an Inclined Plane
,” Res. J. Appl. Sci., Eng. Technol.
, 5
(6
), pp. 2289
–2296
.11.
Li
, T.
, Wang
, Z.
, and Ji
, Z.
, 2012
, “Dynamic Modeling and Simulation of the Internal- and External-Driven Spherical Robot
,” J. Aerosp. Eng.
, 25
(4
), pp. 636
–640
.12.
Kayacana
, E.
, Bayraktaroglua
, Z.
, and Saeysa
, W.
, 2012
, “Modeling and Control of a Spherical Rolling Robot: A Decoupled Dynamics Approach
,” Robotica
, 30
(4
), pp. 671
–680
.13.
Balandin
, D. V.
, Komarov
, M. A.
, and Osipov
, G. V.
, 2013
, “A Motion Control for a Spherical Robot With Pendulum Drive
,” J. Comput. Syst. Sci. Int.
, 52
(4
), pp. 650
–663
.14.
Schroll
, G. C.
, 2010
, “Dynamic Model of a Spherical Robot From First Principles
,” Master's thesis
, Colorado State University, Fort Collins, CO.15.
Nelson
, F. C.
, 1962
, “In-Plane Vibration of a Simply Supported Circular Ring Segment
,” Int. J. Mech. Sci.
, 4
(6
), pp. 517
–527
.16.
Wang
, T. M.
, 1975
, “Effect of Variable Curvature on Fundamental Frequency of Clamped Parabolic Arcs
,” J. Sound Vib.
, 41
(2
), pp. 247
–251
.17.
Chen
, P.-T.
, and Ginsberg
, J. H.
, 1992
, “Modal Properties and Eigenvalue Veering Phenomena in the Axisymmetric Vibration of Spheroidal Shells
,” J. Acoust. Soc. Am.
, 92
(3
), pp. 1499
–1508
.18.
Charpie
, J. P.
, and Burroughs
, C. B.
, 1993
, “An Analytic Model for the Three In-Plane Vibration of Beams of Variable Curvature and Depth
,” J. Acoust. Soc. Am.
, 92
(2
), pp. 866
–879
.19.
Soedel
, W.
, 2004
, Vibrations of Shells and Plates
, Marcel Dekker
, New York
.20.
Long
, C. F.
, 1969
, “Frequency Analysis of Complete Spherical Shells
,” J. Eng. Mech.
, 95
(3
), pp. 505
–518
.21.
Singh
, V. P.
, and Mirza
, S.
, 1985
, “Asymmetric Modes and Associated Eigenvalues for Spherical Shells
,” ASME J. Pressure Vessel Technol.
, 107
(1
), pp. 77
–82
.22.
Gautham
, B. P.
, and Ganesan
, N.
, 1992
, “Free Vibration Analysis of Thick Spherical Shells
,” Comput. Struct.
, 45
(2
), pp. 307
–313
.23.
Sathyamoorthy
, M.
, 1994
, “Vibrations of Moderately Thick Shallow Spherical Shells at Large Amplitudes
,” J. Sound Vib.
, 172
(1
), pp. 63
–70
.24.
Lee
, Y.-S.
, Yang
, M.-S.
, Kim
, H.-S.
, and Kim
, J.-H.
, 2002
, “A Study on the Free Vibration of the Joined Cylindrical Spherical Shell Structures
,” Comput. Struct.
, 80
(24–70
), pp. 2405
–2414
.25.
Ye
, T.
, Jin
, G.
, Chen
, Y.
, and Shi
, S.
, 2014
, “A Unified Formulation for Vibration Analysis of Open Shells With Arbitrary Boundary Conditions
,” Int. J. Mech. Sci.
, 81
, pp. 42
–59
.26.
Chena
, W. Q.
, and Ding
, H. J.
, 1999
, “Natural Frequencies of a Fluid-Filled Anisotropic Spherical Shell
,” J. Acoust. Soc. Am.
, 105
(1
), pp. 174
–182
.27.
Choi
, S.-Y.
, and Kim
, J.-H.
, 2011
, “Natural Frequency Split Estimation for Inextensional Vibration of Imperfect Hemispherical Shell
,” J. Sound Vib.
, 330
(9
), pp. 2094
–2106
.28.
Al-Jumaily
, A. M.
, and Najim
, F. M.
, 1997
, “An Approximation to the Vibrations of Oblate Spheroidal Shells
,” J. Sound Vib.
, 204
(4
), pp. 561
–574
.29.
Angeles
, J.
, and Sasha
, S. K.
, 1991
, “Dynamics of Nonholonomic Mechanical Systems Using a Natural Orthogonal Complement
,” ASME J. Appl. Mech.
, 58
(1
), pp. 238
–243
.30.
Laulusa
, A.
, and Bauchau
, O. A.
, 2008
, “Review of Classical Approaches for Constraint Enforcement in Multibody Systems
,” ASME J. Comput. Nonlinear Dyn.
, 3
(1
), p. 011004
.31.
Hughes
, P. C.
, 2004
, Spacecraft Attitude Dynamics
, 2nd ed., Dover
, New York
.32.
Kreyszig
, E.
, 2011
, Advanced Engineering Mathematics
, 10th ed., Wiley
, Jefferson City, MO
.33.
Schaub
, H.
, and Junkins
, J. L.
, 2009
, Analytical Mechanics of Space Systems
, 2nd ed., American Institute of Aeronautics and Astronautics
, Reston, VA
.34.
Winfrey
, R. C.
, 1972
, “Dynamic Analysis of Elastic Link Mechanisms by Reduction of Coordinates
,” ASME J. Eng. Ind.
, 94
(2
), pp. 577
–581
.35.
Turcic
, D. A.
, and Midha
, A.
, 1984
, “Dynamic Analysis of Elastic Mechanism Systems—Part I: Applications
,” ASME J. Dyn. Syst., Meas., Control
, 106
(4
), pp. 249
–254
.36.
Asada
, H.
, Ma
, Z. D.
, and Tokumaru
, H.
, 1990
, “Inverse Dynamics of Flexible Robot Arms: Modeling and Computation for Trajectory Control
,” ASME J. Dyn. Syst., Meas., Control
, 112
(2
), pp. 177
–185
.37.
Shabana
, A. A.
, 1997
, “Flexible Multibody Dynamics: Review of Past and Recent Developments
,” Multibody Syst. Dyn.
, 1
(2
), pp. 189
–222
.38.
Rao
, A. V.
, 2006
, Dynamics of Particles and Rigid Bodies
, Cambridge University Press
, Cambridge, UK
, pp. 106
–110
.39.
Hogan
, F. R.
, and Forbes
, J. R.
, 2015
, “Modeling of a Flexible Circular Ring
,” ASME J. Appl. Mech.
, 82
(11), p. 111003.Copyright © 2016 by ASME
You do not currently have access to this content.