A piezoelectric mechanical energy harvesting (MEH) technique was recently demonstrated through in vivo experiment by harvesting energy from the motion of porcine left ventricle (LV) myocardial wall. This provides a new strategy of energy supply for operating implantable biomedical devices so as to avoid various shortcomings associated with battery energy. This paper resorts to an analytical electromechanical model for evaluating the efficiency of the piezoelectric MEH device especially of that used in closed chest environment. A nonlinear compressive spring model is proposed to account for the impeding effect of surrounding tissues on the device. Inputting the periodic variation of the LV volume as a loading condition to the device, numerical predictions for the electric outputs are obtained and compare well with experiments. A simple scaling law for the output electric power is established in terms of combined material, geometrical, circuit, and LV motion parameters. The results presented here may provide guidelines for the design of in vivo piezoelectric energy harvesting from motions of biological organs.

References

1.
Owens
,
B. B.
,
1986
,
Batteries for Implantable Biomedical Devices
,
Plenum Press
,
New York
.
2.
Ohm
,
O. J.
, and
Danilovic
,
D.
,
1997
, “
Improvements in Pacemaker Energy Consumption and Functional Capability: Four Decades of Progress
,”
Pacing Clin. Electrophysiol.
,
20
(
1
), pp.
2
9
.
3.
Korpas
,
D.
,
2013
,
Implantable Cardiac Devices Technology
,
Springer
,
New York
.
4.
Mallela
,
V. S.
,
Ilankumaran
,
V.
, and
Rao
,
N. S.
,
2004
, “
Trends in Cardiac Pacemaker Batteries
,”
Indian Pacing Electrophysiol. J.
,
4
(
4
), pp.
201
212
.
5.
Griffith
,
M. J.
,
Mounsey
,
J. P.
,
Bexton
,
R. S.
, and
Holden
,
M.
,
1994
, “
Mechanical, but Not Infective, Pacemaker Erosion May be Successfully Managed by Re-Implantation of Pacemakers
,”
Br. Heart J.
,
71
(
2
), pp.
202
205
.
6.
Wang
,
Z. L.
, and
Wang
,
X.
,
2015
, “
Nanogenerators and Piezotronics
,”
Nano Energy
,
10
(
1016
), pp.
1
2
.
7.
Boisseau
,
S.
,
Despesse
,
G.
, and
Seddik
,
B. A.
,
2013
, “
Nonlinear H-Shaped Springs to Improve Efficiency of Vibration Energy Harvesters
,”
ASME J. Appl. Mech.
,
80
(
6
), p.
061013
.
8.
Wu
,
Z.
,
Harne
,
R. L.
, and
Wang
,
K. W.
,
2014
, “
Energy Harvester Synthesis Via Coupled Linear-Bistable System With Multistable Dynamics
,”
ASME J. Appl. Mech.
,
81
(
6
), p.
061005
.
9.
Chen
,
L. Q.
, and
Jiang
,
W. A.
,
2015
, “
Internal Resonance Energy Harvesting
,”
ASME J. Appl. Mech.
,
82
(
3
), p.
031004
.
10.
Namli
,
O. C.
, and
Taya
,
M.
,
2011
, “
Design of Piezo-SMA Composite for Thermal Energy Harvester Under Fluctuating Temperature
,”
ASME J. Appl. Mech.
,
78
(
3
), p.
031001
.
11.
Yoon
,
J.
,
Baca
,
A. J.
,
Park
,
S. I.
,
Elvikis
,
P.
,
Geddes
,
J. B.
,
Li
,
L.
,
Kim
,
R. H.
,
Xiao
,
J.
,
Wang
,
S.
,
Motala
,
M. J.
,
Kim
,
T.
,
Ahn
,
B. Y.
,
Duoss
,
E. B.
,
Lewis
,
J. A.
,
Nuzzo
,
R. G.
,
Ferreira
,
P. M.
,
Huang
,
Y.
,
Rockett
,
A.
, and
Rogers
,
J. A.
,
2008
, “
Ultrathin Silicon Solar Microcells for Semitransparent, Mechanically Flexible and Microconcentrator Module Designs
,”
Nat. Mater.
,
7
(
11
), pp.
907
915
.
12.
Hansen
,
B. J.
,
Liu
,
Y.
,
Yang
,
R.
, and
Wang
,
Z. L.
,
2010
, “
Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy
,”
ACS Nano
,
4
(
7
), pp.
3647
3652
.
13.
González
,
J. L.
,
Rubio
,
A.
, and
Moll
,
F.
,
2002
, “
Human Powered Piezoelectric Batteries to Supply Power to Wearable Electronic Devices
,”
Int. J. Soc. Mater. Eng. Resour.
,
10
(
1
), pp.
34
40
.
14.
Riemer
,
R.
, and
Shapiro
,
A.
,
2011
, “
Biomechanical Energy Harvesting From Human Motion: Theory, State of the Art, Design Guidelines, and Future Directions
,”
J. Neuroeng. Rehabil.
,
8
(
1
), pp.
1
13
.
15.
Anton
,
S. R.
, and
Sodano
,
H. A.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
,
16
(
3
), pp.
R1
R21
.
16.
Abdi
,
H.
,
Mohajer
,
N.
, and
Nahavandi
,
S.
,
2014
, “
Human Passive Motions and a User-Friendly Energy Harvesting System
,”
J. Intell. Mater. Syst. Struct.
,
25
(
8
), pp.
923
936
.
17.
Sohn
,
J. W.
,
Choi
,
S. B.
, and
Lee
,
D. Y.
,
2005
, “
An Investigation on Piezoelectric Energy Harvesting for MEMS Power Sources
,”
Proc. Inst. Mech. Eng., Part C
,
219
(
4
), pp.
429
436
.
18.
Li
,
Z.
,
Zhu
,
G.
,
Yang
,
R.
,
Wang
,
A. C.
, and
Wang
,
Z. L.
,
2010
, “
Muscle-Driven In Vivo Nanogenerator
,”
Adv. Mater.
,
22
(
23
), pp.
2534
2537
.
19.
Zhang
,
H.
,
Zhang
,
X.
,
Cheng
,
X.
,
Liu
,
Y.
,
Han
,
M.
,
Xue
,
X.
,
Wang
,
S.
,
Yang
,
F.
,
Smitha
,
A. S.
,
Zhang
,
H.
, and
Xu
,
Z.
,
2015
, “
A Flexible and Implantable Piezoelectric Generator Harvesting Energy From the Pulsation of Ascending Aorta: In Vitro and In Vivo Studies
,”
Nano Energy
,
12
, pp.
296
304
.
20.
Rogers
,
J. A.
,
2015
, “
Electronics for the Human Body
,”
J. Am. Med. Assoc.
,
313
(
6
), pp.
561
562
.
21.
Dagdeviren
,
C.
,
Yang
,
B. D.
,
Su
,
Y.
,
Tran
,
P. L.
,
Joe
,
P.
,
Anderson
,
E.
,
Xia
,
J.
,
Doraiswamy
,
V.
,
Dehdashti
,
B.
,
Feng
,
X.
,
Lu
,
B.
,
Poston
,
R.
,
Khalpey
,
Z.
,
Ghaffari
,
R.
,
Huang
,
Y.
,
Slepian
,
M. J.
, and
Rogers
,
J. A.
,
2014
, “
Conformal Piezoelectric Energy Harvesting and Storage From Motions of the Heart, Lung, and Diaphragm
,”
Proc. Natl. Acad. Sci. U.S.A.
,
111
(
5
), pp.
1927
1932
.
22.
Lu
,
B.
,
Chen
,
Y.
,
Ou
,
D.
,
Chen
,
H.
,
Diao
,
L.
,
Zhang
,
W.
,
Zheng
,
J.
,
Ma
,
W.
,
Sun
,
L.
, and
Feng
,
X.
,
2015
, “
Ultra-Flexible Piezoelectric Devices Integrated With Heart to Harvest the Biomechanical Energy
,”
Sci. Rep.
,
5
, p.
16065
.
23.
Chen
,
Y.
,
Lu
,
B.
,
Ou
,
D.
, and
Feng
,
X.
,
2015
, “
Mechanics of Flexible and Stretchable Piezoelectrics for Energy Harvesting
,”
Sci. China: Phys., Mech. Astron.
,
58
(
9
), pp.
1
13
.
24.
Lu
,
B.
,
2014
, “
Flexible Piezoelectric/Ferroelectric Devices for Biomedical Application and Its Electromechanical Mechanism
,” Ph.D. dissertation, Tsinghua University, Beijing.
25.
Keten
,
S.
, and
Buehler
,
M. J.
,
2010
, “
Nanostructure and Molecular Mechanics of Spider Dragline Silk Protein Assemblies
,”
J. R. Soc., Interface
,
7
(
53
), pp.
1709
1721
.
26.
Storm
,
C.
,
Pastore
,
J. J.
,
MacKintosh
,
F. C.
,
Lubensky
,
T. C.
, and
Janmey
,
P. A.
,
2005
, “
Nonlinear Elasticity in Biological Gels
,”
Nature
,
435
(
7039
), pp.
191
194
.
27.
Destrade
,
M.
,
Gilchrist
,
M. D.
, and
Ogden
,
R. W.
,
2010
, “
Third-and Fourth-Order Elasticities of Biological Soft Tissues
,”
J. Acoust. Soc. Am.
,
127
(
4
), pp.
2103
2106
.
28.
Yin
,
J.
,
Yagüe
,
J. L.
,
Eggenspieler
,
D.
,
Gleason
,
K. K.
, and
Boyce
,
M. C.
,
2012
, “
Deterministic Order in Surface Micro-Topologies Through Sequential Wrinkling
,”
Adv. Mater.
,
24
(
40
), pp.
5441
5446
.
29.
Chen
,
Y.
,
Zhu
,
Y.
,
Chen
,
X.
, and
Liu
,
Y.
,
2016
, “
Mechanism of the Transition From In-Plane Buckling to Helical Buckling for a Stiff Nanowire on an Elastomeric Substrate
,”
ASME J. Appl. Mech.
,
83
(
4
), p.
041011
.
30.
Wang
,
Q.
, and
Zhao
,
X.
,
2013
, “
Phase Diagrams of Instabilities in Compressed Film-Substrate Systems
,”
ASME J. Appl. Mech.
,
81
(
5
), p.
051004
.
31.
Chen
,
C.
,
Tao
,
W.
,
Su
,
Y.
,
Wu
,
J.
, and
Song
,
J.
,
2013
, “
Lateral Buckling of Interconnects in a Noncoplanar Mesh Design for Stretchable Electronics
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041031
.
32.
Li
,
Y.
,
Song
,
J.
,
Fang
,
B.
, and
Zhang
,
J.
,
2011
, “
Surface Effects on the Postbuckling of Nanowires
,”
J. Phys. D: Appl. Phys.
,
44
(
42
), p.
425304
.
33.
Ding
,
H. J.
, and
Chen
,
W. Q.
,
2001
,
Three Dimensional Problems of Piezoelasticity
,
Nova Science
,
New York
.
34.
Teichholz
,
L. E.
,
Kreulen
,
T.
,
Herman
,
M. V.
, and
Gorlin
,
R.
,
1976
, “
Problems in Echocardiographic Volume Determinations: Echocardiographic-Angiographic Correlations in the Presence or Absence of Asynergy
,”
Am. J. Cardiol.
,
37
(
1
), pp.
7
11
.
35.
Chinchoy
,
E.
,
Soule
,
C. L.
,
Houlton
,
A. J.
,
Gallagher
,
W. J.
,
Hjelle
,
M. A.
,
Laske
,
T. G.
,
Morissette
,
M. G.
, and
Iaizzo
,
P. A.
,
2000
, “
Isolated Four-Chamber Working Swine Heart Model
,”
Ann. Thorac. Surg.
,
70
(
5
), pp.
1607
1614
.
36.
Ekser
,
B.
,
Ezzelarab
,
M.
,
Hara
,
H.
,
van der Windt
,
D. J.
,
Wijkstrom
,
M.
,
Bottino
,
R.
,
Trucco
,
M.
, and
Cooper
,
D. K.
,
2012
, “
Clinical Xenotransplantation: The Next Medical Revolution
,”
Lancet
,
379
(
9816
), pp.
672
683
.
37.
Cooper
,
D. K.
,
Gollackner
,
B.
, and
Sachs
,
D. H.
,
2002
, “
Will the Pig Solve the Transplantation Backlog
,”
Annu. Rev. Med.
,
53
(
1
), pp.
133
147
.
38.
Corsi
,
C.
,
Saracino
,
G.
,
Sarti
,
A.
, and
Lamberti
,
C.
,
2002
, “
Left Ventricular Volume Estimation for Real-Time Three-Dimensional Echocardiography
,”
IEEE Trans. Med. Imaging
,
21
(
9
), pp.
1202
1208
.
39.
Lang
,
R. M.
,
Bierig
,
M.
,
Devereux
,
R. B.
,
Flachskampf
,
F. A.
,
Foster
,
E.
,
Pellikka
,
P. A.
,
Picard
,
M. H.
, and
Solomon
,
S.
,
2006
, “
Recommendations for Chamber Quantification
,”
Eur. Heart J.-Cardiovasc. Imaging
,
7
(
2
), pp.
79
108
.
40.
Lu
,
F.
,
Lee
,
H. P.
, and
Lim
,
S. P.
,
2004
, “
Modeling and Analysis of Micro Piezoelectric Power Generators for Micro-Electromechanical-Systems Applications
,”
Smart Mater. Struct.
,
13
(
1
), pp.
57
–63.
You do not currently have access to this content.