Many of the attractive properties of graphene will only be realized when it can be mass produced. One bottleneck is the efficient transfer of graphene between various substrates in nanomanufacturing processes such as roll-to-roll and transfer printing. In such processes, it is important to understand how the ratio of shear-to-tension at the interface between graphene and substrates affects the adhesion energy. With this in mind, this paper examines the mixed-mode adhesive interactions between chemical vapor deposition (CVD) grown graphene that had been transferred to copper or silicon substrates. The approach that was taken was to use blister tests with a range of graphene backing layer materials and thicknesses in order to provide a wide range of the shear-to-tension ratio or fracture mode-mix at the interface. Raman spectroscopy was used to ensure that graphene had indeed been delaminated from each substrate. Measurements of pressure, top surface deflection, and blister diameter were coupled with fracture mechanics analyses to obtain the delamination resistance curves and steady state adhesion energy of each interface. The results showed that the adhesive interactions between graphene and both substrates (Cu and Si) had a strong dependence on the fracture mode-mix. In the absence of plasticity effects, the most likely explanation of this effect is asperity locking from the inherent surface roughness of the substrates.

References

1.
Zong
,
Z.
,
Chen
,
C. L.
,
Dokmeci
,
M. R.
, and
Wan
,
K. T.
,
2010
, “
Direct Measurement of Graphene Adhesion on Silicon Surface by Intercalation of Nanoparticles
,”
J. Appl. Phys.
,
107
(
2
), p.
026104
.10.1063/1.3294960
2.
Koenig
,
S. P.
,
Boddeti
,
N. G.
,
Dunn
,
M. L.
, and
Bunch
,
J. S.
,
2011
, “
Ultrastrong Adhesion of Graphene Membranes
,”
Nat. Nanotechnol.
,
6
(
9
), pp.
543
546
.10.1038/nnano.2011.123
3.
Boddeti
,
N. G.
,
Koenig
,
S. P.
,
Long
,
R.
,
Xiao
,
J.
,
Bunch
,
J. S.
, and
Dunn
,
M. L.
,
2013
, “
Mechanics of Adhered, Pressurized Graphene Blisters
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
040909
.10.1115/1.4024255
4.
Cao
,
Z.
,
Wang
,
P.
,
Gao
,
W.
,
Tao
,
L.
,
Suk
,
J. W.
,
Ruoff
,
R. S.
,
Akinwande
,
D.
,
Huang
,
R.
, and
Liechti
,
K. M.
,
2014
, “
A Blister Test for Interfacial Adhesion of Large-Scale Transferred Graphene
,”
Carbon
,
69
, pp.
390
400
.10.1016/j.carbon.2013.12.041
5.
Na
,
S. R.
,
Suk
,
J. W.
,
Ruoff
,
R. S.
,
Huang
,
R.
, and
Liechti
,
K. M.
,
2014
, “
Ultra Long-Range Interactions Between Large Area Graphene and Silicon
,”
ACS Nano
,
8
(
11
), pp.
11234
11242
.10.1021/nn503624f
6.
Yoon
,
T.
,
Shin
,
W. C.
,
Kim
,
T. Y.
,
Mun
,
J. H.
,
Kim
,
T. S.
, and
Cho
,
B. J.
,
2012
, “
Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process
,”
Nano Lett.
,
12
(
3
), pp.
1448
1452
.10.1021/nl204123h
7.
Na
,
S. R.
,
Suk
,
J. W.
,
Tao
,
L.
,
Akinwande
,
D.
,
Ruoff
,
R. S.
,
Huang
,
R.
, and
Liechti
,
K. M.
,
2015
, “
Selective Mechanical Transfer of Graphene From Seed Copper Foil Using Rate Effects
,”
ACS Nano
,
9
(
2
), pp.
1325
1335
.10.1021/nn505178g
8.
He
,
Y.
,
Chen
,
W. F.
,
Yu
,
W. B.
,
Ouyang
,
G.
, and
Yang
,
G. W.
,
2013
, “
Anomalous Interface Adhesion of Graphene Membranes
,”
Sci. Rep.
,
3
, p.
2660
.10.1038/srep02660
9.
Bunch
,
J. S.
, and
Dunn
,
M. L.
,
2012
, “
Adhesion Mechanics of Graphene Membranes
,”
Solid State Commun.
,
152
(
15
), pp.
1359
1364
.10.1016/j.ssc.2012.04.029
10.
Chadegani
,
A.
, and
Batra
,
R. C.
,
2011
, “
Analysis of Adhesive-Bonded Single-Lap Joint With an Interfacial Crack and a Void
,”
Int. J. Adhes. Adhes.
,
31
(
6
), pp.
455
465
.10.1016/j.ijadhadh.2011.02.006
11.
Liu
,
Y. J. J.
, and
Xu
,
N.
,
2000
, “
Modeling of Interface Cracks in Fiber-Reinforced Composites With the Presence of Interphases Using the Boundary Element Method
,”
Mech. Mater.
,
32
(
12
), pp.
769
783
.10.1016/S0167-6636(00)00045-4
12.
Ye
,
T.
,
Suo
,
Z.
, and
Evans
,
A. G.
,
1992
, “
Thin-Film Cracking and the Roles of Substrate and Interface
,”
Int. J. Solids Struct.
,
29
(
21
), pp.
2639
2648
.10.1016/0020-7683(92)90227-K
13.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1991
, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
,
29
, pp.
63
191
.10.1016/S0065-2156(08)70164-9
14.
Gerstner
,
R. W.
, and
Dundurs
,
J.
,
1969
, “
Representation of Stress Concentration Factors for a Composite in Plane Strain
,”
J. Compos. Mater.
,
3
(
1
), pp.
108
115
.10.1177/002199836900300108
15.
Rice
,
J. R.
,
1988
, “
Elastic Fracture Mechanics Concepts for Interfacial Cracks
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
98
103
.10.1115/1.3173668
16.
Suo
,
Z.
, and
Hutchinson
,
J.
,
1990
, “
Interface Crack Between Two Elastic Layers
,”
Int. J. Fract.
,
43
(
1
), pp.
1
18
.10.1007/BF00018123
17.
Wang
,
J. S.
, and
Suo
,
Z.
,
1990
, “
Experimental-Determination of Interfacial Toughness Curves Using Brazil-Nut-Sandwiches
,”
Acta Metall. Mater.
,
38
(
7
), pp.
1279
1290
.10.1016/0956-7151(90)90200-Z
18.
Chai
,
Y. S.
, and
Liechti
,
K. M.
,
1992
, “
Asymmetric Shielding in Interfacial Fracture Under In-Plane Shear
,”
ASME J. Appl. Mech.
,
59
(
2
), pp.
295
304
.10.1115/1.2899520
19.
Evans
,
A. G.
, and
Hutchinson
,
J. W.
,
1989
, “
Effects of Non-Planarity on the Mixed Mode Fracture Resistance of Bimaterial Interfaces
,”
Acta Metall.
,
37
(
3
), pp.
909
916
.10.1016/0001-6160(89)90017-5
20.
Swadener
,
J. G.
, and
Liechti
,
K. M.
,
1998
, “
Asymmetric Shielding Mechanisms in the Mixed-Mode Fracture of a Glass/Epoxy Interface
,”
ASME J. Appl. Mech.
,
65
(
1
), pp.
25
29
.10.1115/1.2789035
21.
Han
,
X. L.
,
Ellyin
,
F.
, and
Xia
,
Z. H.
,
2001
, “
Interface Crack Between Two Different Viscoelastic Media
,”
Int. J. Solids Struct.
,
38
(
44–45
), pp.
7981
7997
.10.1016/S0020-7683(01)00019-1
22.
Jensen
,
H. M.
, and
Thouless
,
M. D.
,
1993
, “
Effects of Residual Stresses in the Blister Test
,”
Int. J. Solids Struct.
,
30
(
6
), pp.
779
795
.10.1016/0020-7683(93)90040-E
23.
Jensen
,
H. M.
,
1998
, “
Analysis of Mode Mixity in Blister Tests
,”
Int. J. Fract.
,
94
(
1
), pp.
79
88
.10.1023/A:1007555313162
24.
Li
,
X.
,
Cai
,
W.
,
An
,
J.
,
Kim
,
S.
,
Nah
,
J.
,
Yang
,
D.
,
Piner
,
R.
,
Velamakanni
,
A.
,
Jung
,
I.
,
Tutuc
,
E.
,
Banerjee
,
S. K.
,
Colombo
,
L.
, and
Ruoff
,
S.
,
2009
, “
Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils
,”
Science
,
324
(
5932
), pp.
1312
1314
.10.1126/science.1171245
25.
Suk
,
J. W.
,
Kitt
,
A.
,
Magnuson
,
C. W.
,
Hao
,
Y.
,
Ahmed
,
S.
,
An
,
J.
,
Swan
,
A. K.
,
Goldberg
,
B. B.
, and
Ruoff
,
R. S.
,
2011
, “
Transfer of CVD-Grown Monolayer Graphene Onto Arbitrary Substrates
,”
ACS Nano
,
5
(
9
), pp.
6916
6924
.10.1021/nn201207c
26.
Wang
,
P.
,
Gao
,
W.
,
Cao
,
Z.
,
Liechti
,
K. M.
, and
Huang
,
R.
,
2013
, “
Numerical Analysis of Circular Graphene Bubbles
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
040905
.10.1115/1.4024169
27.
Shih
,
C. F.
, and
Asaro
,
R. J.
,
1988
, “
Elastic–Plastic Analysis of Cracks on Bimaterial Interfaces: Part I—Small Scale Yielding
,”
ASME J. Appl. Mech.
,
55
(
2
), pp.
299
316
.10.1115/1.3173676
28.
Hopcroft
,
M.
,
Kramer
,
T.
,
Kim
,
G.
,
Takashima
,
K.
,
Higo
,
Y.
,
Moore
,
D.
, and
Brugger
,
J.
,
2005
, “
Micromechanical Testing of SU-8 Cantilevers
,”
Fatigue Fract. Eng. Mater. Struct.
,
28
(
8
), pp.
735
742
.10.1111/j.1460-2695.2005.00873.x
29.
Swadener
,
J. G.
, and
Liechti
,
K. M.
,
1998
, “
Asymmetric Shielding Mechanisms in the Mixed-Mode Fracture of a Glass/Epoxy Interface
,”
ASME J. Appl. Mech.
,
65
(
1
), pp.
25
29
.10.1115/1.2789035
30.
Swadener
,
J. G.
,
Liechti
,
K. M.
, and
de Lozanne
,
A. L.
,
1999
, “
The Intrinsic Toughness and Adhesion Mechanisms of a Glass/Epoxy Interface
,”
J. Mech. Phys. Solids
,
47
(
2
), pp.
223
258
.10.1016/S0022-5096(98)00084-2
31.
Ni
,
Z. H.
,
Yu
,
T.
,
Lu
,
Y. H.
,
Wang
,
Y. Y.
,
Feng
,
Y. P.
, and
Shen
,
Z. X.
,
2008
, “
Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening
,”
Acs Nano
,
2
(
11
), pp.
2301
2305
.10.1021/nn800459e
You do not currently have access to this content.