A concept for fusing information from the kinematics describing human locomotion with body-fixed sensors for the purpose of in situ gait monitoring is studied. This is done by using an individual's gait patterns (as captured by a simplified kinematic model) with acceleration measurements made at key points on the body. The gait patterns are expressed as nominal relations between shank, thigh, and stance leg angles during normal walking. It is shown how the use of known gait patterns reduces the required number of sensors attached to the body that are required for a sensor-based monitoring of gait. The feasibility of the approach is demonstrated using a single acceleration measurement at the ankle to estimate limb angles and step size in situ. Such gait monitoring may be used for the evaluations of a subject's overall quality of gait through the determination of flexions at the knees and hip. In addition, step sizes, distance walked, and speed can be estimated. Apart from gait analysis, the method can be used for remotely monitoring the safety of individuals to the extent this can be done through consideration of the state of gait.

References

1.
Arnold
,
A. S.
,
Anderson
,
F. C.
,
Pandy
,
M. G.
, and
Delp
,
S. L.
,
2005
, “
Muscular Contributions to Hip and Knee Extension During the Single Limb Stance Phase of Normal Gait: A Framework for Investigating the Causes of Crouch Gait
,”
J. Biomech.
,
38
(
11
), pp.
2181
2189
.10.1016/j.jbiomech.2004.09.036
2.
Crenna
,
P.
,
1998
, “
Spasticity and ‘Spastic’ Gait in Children With Cerebral Palsy
,”
Neurosci. Biobehav. Rev.
,
22
(
4
), pp.
571
578
.10.1016/S0149-7634(97)00046-8
3.
Schwartz
,
M. H.
, and
Rozumalski
,
A.
,
2008
, “
The Gait Deviation Index: A New Comprehensive Index of Gait Pathology
,”
Gait and Posture
,
28
(
3
), pp.
351
357
.10.1016/j.gaitpost.2008.05.001
4.
Cameron
,
M. H.
, and
Wagner
,
J. M.
,
2011
, “
Gait Abnormalities in Multiple Sclerosis: Pathogenesis, Evaluation, and Advances in Treatment
,”
Curr. Neurol. Neurosci. Rep.
,
11
(
5
), pp.
507
515
.10.1007/s11910-011-0214-y
5.
Gehlsen
,
G.
,
Beekman
,
K.
,
Assmann
,
N.
,
Winant
,
D.
,
Seidle
,
M.
, and
Carter
,
A.
,
1986
, “
Gait Characteristics in Multiple Sclerosis: Progressive Changes and Effects of Exercise on Parameters
,”
Arch. Phys. Med. Rehabil.
,
67
(
8
), pp.
536
539
.
6.
Menz
,
H. B.
,
Lord
,
S. R.
, and
Fitzpatrick
,
R. C.
,
2003
, “
Acceleration Patterns of the Head and Pelvis When Walking are Associated With Risk of Falling in Community-Dwelling Older People
,”
J. Gerontol. A Biol. Sci. Med. Sci.
,
58
(
5
), pp.
446
452
.10.1093/gerona/58.5.M446
7.
Menz
,
H. B.
,
Lord
,
S. R.
, and
Fitzpatrick
,
R. C.
,
2003
, “
Age-Related Differences in Walking Stability
,”
Age Ageing
,
32
(
2
), pp.
137
142
.10.1093/ageing/32.2.137
8.
Rota
,
V.
,
Perucca
,
L.
,
Simone
,
A.
, and
Tesio
,
L.
,
2011
, “
Walk Ratio (Step Length/Cadence) as a Summary Index of Neuromotor Control of Gait: Application to Multiple Sclerosis
,”
Int. J. Rehabil. Res.
,
34
(
3
),
265
269
.10.1097/MRR.0b013e328347be02
9.
Wolfson
,
L.
,
2001
, “
Gait and Balance Dysfunction: A Model of the Interaction of Age and Disease
,”
Neuroscientist
,
7
(
2
), pp.
178
183
.10.1177/107385840100700212
10.
Foxlin
,
E.
,
2005
, “
Pedestrian Tracking With Shoe-Mounted Inertial Sensors
,”
IEEE Comput. Graphics Appl.
,
25
(
6
), pp.
38
46
.10.1109/MCG.2005.140
11.
Stirling
,
R.
,
Collin
,
J.
,
Fyfe
,
K.
, and
Lachapelle
,
G.
,
2003
, “
An Innovative Shoe-Mounted Pedestrian Navigation System
,”
Proceedings of the European Navigation Conference (GNSS), Graz, Austria, April 22–25, CDROM
,
Austrian Institute of Navigation
.
12.
PRWeb
,
2011
, “
Aframe Digital Receives NIH/NIA Grant Funding for Follow-On Research in Advanced Health Monitoring Technology for Seniors
,” http://aframedigital.com/pubs/AframeDigitalNIHGrantAug2011.pdf, accessed Jan. 11,
2013
.
13.
BodyMedia, Inc.
,
2013
, “
BodyMedia Health and Fitness
,” www.bodymedia.com, accessed Jan. 11,
2013
.
14.
Gruve Technologies, Inc.
,
2013
, “
N.E.A.T. Technology Today
,” www.muveinc.com, accessed Jan. 11,
2013
.
15.
Nike
,
2013
, “
Nike+Fuelband
,” www.nike.com/fuelband, accessed Jan. 28,
2011
.
16.
Xsens
,
2013
, “
Xsens 3D Motion Tracking
,” http://www.xsens.com, accessed Jan. 31,
2012
.
17.
Gardner
,
M. J.
,
Barker
,
J. U.
,
Briggs
,
S. M.
,
Backus
,
S. I.
,
Helfet
,
D. L.
,
Lane
,
J. M.
, and
Lorich
,
D. G.
,
2007
, “
An Evaluation of Accuracy and Repeatability of a Novel Gait Analysis Device
,”
Arch. Orthop. Trauma Surg.
,
127
(
3
), pp.
223
227
.10.1007/s00402-006-0279-2
18.
Minisun
,
2013
, “
Gait Analysis
,” http://www.minisun.com/applications/gait.asp, accessed Jan. 11,
2013
.
19.
Huddleston
,
J.
,
Alaiti
,
A.
,
Goldvasser
,
D.
,
Scarborough
,
D.
,
Freiberg
,
A.
,
Rubash
,
H.
,
Malchau
,
H.
,
Harris
,
W.
, and
Krebs
,
D.
,
2006
, “
Ambulatory Measurement of Knee Motion and Physical Activity: Preliminary Evaluation of a Smart Activity Monitor
,”
J. Neuroeng. Rehabil.
,
3
(
21
), pp.
1
10
10.1186/1743-0003-3-21
20.
Maffiuletti
,
N. A.
,
2007
, “
Concurrent Validity and Intrasession Reliability of the IDEEA Accelerometry System for the Quantification of Spatiotemporal Gait Parameters
,”
Gait and Posture
,
27
(
1
), pp.
160
163
.10.1016/j.gaitpost.2007.01.003
21.
Zhang
,
K.
,
Gorjian
,
A.
, and
Lester
,
D. K.
,
2006
, “
Gait Change After Local Anesthetic of Chronically Arthritic Knee
,”
J. Long-Term Effects Med. Implants
,
16
(
3
), pp.
223
234
.10.1615/JLongTermEffMedImplants.v16.i3.30
22.
Minisun LLC
,
2004
, “
Portable Gait Lab
,” http://www.portablegaitlab.com/data.asp, accessed Jan. 31,
2012
.
23.
Furusho
,
J.
, and
Masubichi
,
M.
,
1986
, “
Control of a Dynamical Biped Locomotion System for Steady Walking
,”
ASME J. Dyn. Syst., Meas., Control
,
108
, pp.
111
118
.10.1115/1.3143752
24.
Furusho
,
J.
, and
Masubichi
,
M.
,
1987
, “
A Theoretically Reduced Order Model for the Control of Dynamic Biped Locomotion
,”
ASME J. Dyn. Syst., Meas., Control
,
109
, pp.
155
163
.10.1115/1.3143833
25.
Hurmuzlu
,
Y.
,
1993
, “
Dynamics of Bipedal Gait Part I: Objective Functions and the Contact Event of a Planar Five-Link Biped
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
331
336
.10.1115/1.2900797
26.
Hurmuzlu
,
Y.
,
1993
, “
Dynamics of Bipedal Gait Part II: Stability Analysis of a Planar Five-Link Biped
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
337
343
.10.1115/1.2900798
27.
Matthews
,
C. J.
,
Ketema
,
Y.
, and
Gebre-Egziabher
,
D.
,
2010
, “
Dead Reckoning and Personal Navigation Using a Kinetic Model for Human Gait
,” AEM Report No. 2010-1.
28.
Matthews
,
C. J.
,
Ketema
,
Y.
,
Gebre-Egziabher
,
D.
, and
Schwartz
,
M.
,
2010
, “
In-Situ Step Size Estimation Using a Kinetic Model of Human Gait
,”
Proceedings of the 23rd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2010)
,
Portland, OR
,
September 21–24
, pp.
511
524
.
29.
Kadaba
,
M. P.
,
Ramakrishnan
,
H. K.
,
Wootten
,
M. E.
,
Gainey
,
J.
,
Gorton
,
G.
, and
Cochran
,
G. V.
,
1989
, “
Repeatability of Kinematic, Kinetic, and Electromyographic Data in Normal Adult Gait
,”
J. Orthop. Res.
,
7
(
6
), pp.
849
860
.10.1002/jor.1100070611
30.
Steinwender
,
G.
,
Saraph
,
V.
,
Scheiber
,
S.
,
Zwick
,
E. B.
,
Uitz
,
C.
, and
Hackl
,
K.
,
2000
, “
Intrasubject Repeatability of Gait Analysis Data in Normal and Spastic Children
,”
Clin. Biomech. (Bristol, Avon)
,
15
(
2
), pp.
134
139
.10.1016/S0268-0033(99)00057-1
31.
Winter
,
D. A.
,
1984
, “
Kinematic and Kinetic Patterns in Human Gait: Variability and Compensating Effects
,”
Hum. Mov. Sci.
,
3
, pp.
51
76
.10.1016/0167-9457(84)90005-8
32.
Kolstad
,
K.
,
Wigren
,
A.
, and
Oberg
,
K.
,
1982
, “
Gait Analysis With an Angle Diagram Techique
,”
Acta. Orthop. Scand.
,
53
(
5
), pp.
733
743
.10.3109/17453678208992285
33.
Schwartz
,
M. H.
,
Rozumalski
,
A.
, and
Trost
,
J. P.
,
2008
, “
The Effect of Walking Speed on the Gait of Typically Developing Children
,”
J. Biomech.
,
41
(
8
), pp.
1639
1650
.10.1016/j.jbiomech.2008.03.015
34.
Gillette Childrens' Specialty Healthcare
,
2013
, “
Gillette Childrens' Specialty Healthcare
,” www.gillettechildrens.org, accessed Feb. 5,
2013
.
35.
Kadaba
,
M. P.
,
Ramakrishnan
,
H. K.
,
Wootten
,
M. E.
,
Gainey
,
J.
,
Gorton
,
G.
, and
Cochran
,
G. V.
,
1989
, “
Repeatability of Kinematic, Kinetic and Electromyographic Data in Normal Adult Gait
,”
J. Orthop. Res.
,
7
(
6
), pp.
849
860
.10.1002/jor.1100070611
36.
Ounpuu
,
S.
,
Gage
,
J. R.
, and
Davis
,
R. B.
,
1991
, “
Three-Dimensional Lower Extremity Joint Kinetics in Normal Pediatric Gait
,”
J. Pediatr. Orthop.
,
11
(
3
), pp.
341
349
.
37.
Schwartz
,
M. H.
, and
Rozumalski
,
A.
,
2005
, “
A New Method for Estimating Joint Parameters From Motion Data
,”
J. Biomech.
,
38
(
1
), pp.
107
116
.10.1016/j.jbiomech.2004.03.009
38.
Simon
,
D.
,
2006
,
Optimal Estimation
,
Wiley-Interscience
,
Hoboken, NJ
.
39.
McGinley
,
J. L.
,
Baker
,
R.
,
Wolfe
,
R.
, and
Morris
,
M. E.
,
2009
, “
The Reliability of Three Dimensional Kinematic Gait Measurements: A Systematic Review
,”
Gait and Posture
,
29
, pp.
360
369
.10.1016/j.gaitpost.2008.09.003
40.
Schwartz
,
M. H.
,
Trost
,
J. P.
, and
Wervey
,
R. A.
,
2004
, “
Measurement and Management of Errors in Quantitative Gait Data
,”
Gait and Posture
,
20
, pp.
196
203
.10.1016/j.gaitpost.2003.09.011
You do not currently have access to this content.