A finite element analysis of steady-state crack growth in pseudoelastic shape memory alloys under the assumption of adiabatic conditions is carried out for plane strain, mode I loading. The crack is assumed to propagate at a critical level of the crack-tip energy release rate and the fracture toughness is obtained as the ratio of the far-field applied energy release rate to the crack-tip critical value. Results related to the influence of latent heat on the near-tip stress field and fracture toughness are presented for a range of parameters related to thermomechanical coupling. The levels of fracture toughness enhancement, associated with the energy dissipated by the transformed material in the wake of the growing crack, are found to be lower under adiabatic conditions than under isothermal conditions [Baxevanis et al., 2014, J. Appl. Mech., 81, 041005]. Given that in real applications of shape memory alloy (SMA) components the processes are usually not adiabatic, which is the case with the lowest energy dissipation during a cyclic loading–unloading process (hysteresis), it is expected that the actual level of transformation toughening would be higher than the one corresponding to the adiabatic case.

References

1.
Shaw
,
J.
, and
Kyriakides
,
S.
,
1995
, “
Thermomechanical Aspects of NiTi
,”
J. Mech. Phys. Solids
,
43
(
8
), pp.
1243
1281
.10.1016/0022-5096(95)00024-D
2.
Eggeler
,
G.
,
Hornbogen
,
E.
,
Yawny
,
A.
,
Heckmann
,
A.
, and
Wagner
,
M.
,
2004
, “
Structural and Functional Fatigue of NiTi Shape Memory Alloys
,”
Mater. Sci. Eng. A
,
378
(
1–2
), pp.
24
33
.10.1016/j.msea.2003.10.327
3.
Prahlad
,
H.
, and
Chopra
,
I.
,
2003
, “
Development of a Strain-Rate Dependent Model for Uniaxial Loading of SMA Wires
,”
J. Intell. Mater. Syst. Struct.
,
14
(
14
), pp.
429
442
.10.1177/1045389X030147005
4.
Morin
,
C.
,
Moumni
,
Z.
, and
Zaki
,
W.
,
2011
, “
Thermomechanical Coupling in Shape Memory Alloys Under Cyclic Loadings: Experimental Analysis and Constitutive Modeling
,”
Int. J. Plast.
,
27
(12), pp.
1959
1980
.10.1016/j.ijplas.2011.05.005
5.
Miyazaki
,
S.
,
1990
,
Engineering Aspects of Shape Memory Alloys
,
Butterworth-Heinemann
,
London
.
6.
Otsuka
,
K.
, and
Wayman
,
C.
, eds.,
1999
,
Shape Memory Materials
,
Cambridge University
,
Cambridge, UK
.
7.
Morgan
,
N.
,
2004
, “
Medical Shape Memory Alloy Applications—The Market and Its Products
,”
Mater. Sci. Eng. A
,
378
(1–2), pp.
16
23
.10.1016/j.msea.2003.10.326
8.
Lagoudas
,
D.
, ed.,
2008
,
Shape Memory Alloys: Modelling and Engineering Applications
,
Springer
,
New York
.
9.
Yi
,
S.
, and
Gao
,
S.
,
2000
, “
Fracture Toughening Mechanism of Shape Memory Alloys Due to Martensite Transformation
,”
Int. J. Solids Struct.
,
37
(38), pp.
5315
5327
.10.1016/S0020-7683(99)00213-9
10.
Yi
,
S.
,
Gao
,
S.
, and
Shen
,
S.
,
2001
, “
Fracture Toughening Mechanism of Shape Memory Alloys Under Mixed-Mode Loading Due to Martensite Transformation
,”
Int. J. Solids Struct.
,
38
(24–25), pp.
4463
4476
.10.1016/S0020-7683(00)00283-3
11.
Yan
,
W.
, and
Mai
,
Y.
,
2006
,
Theoretical Consideration on the Fracture of Shape Memory Alloys
, Vol.
127
,
Springer
,
Dordrecht, Netherlands
, pp.
217
226
.
12.
Stam
,
G.
, and
van der Giessen
,
E.
,
1995
, “
Effect of Reversible Phase Transformations on Crack Growth
,”
Mech. Mater.
,
21
(1), pp.
51
71
.10.1016/0167-6636(94)00074-3
13.
Freed
,
Y.
, and
Banks-Sills
,
L.
,
2007
, “
Crack Growth Resistance of Shape Memory Alloys by Means of a Cohesive Zone Model
,”
J. Mech. Phys. Solids
,
55
(10), pp.
2157
2180
.10.1016/j.jmps.2007.03.002
14.
Baxevanis
,
T.
,
Parrinello
,
A.
, and
Lagoudas
,
D.
,
2013
, “
On the Fracture Toughness Enhancement Due to Stress-Induced Phase Transformation in Shape Memory Alloys
,”
Int. J. Plast.
,
50
, pp.
158
169
.10.1016/j.ijplas.2013.04.007
15.
Baxevanis
,
T.
,
Landis
,
C.
, and
Lagoudas
,
D.
,
2013
, “
On the Fracture Toughness of Pseudoelastic Shape Memory Alloys
,”
ASME J. Appl. Mech.
,
81
(4), p.
041005
.10.1115/1.4025139
16.
Yan
,
Y.
,
Yin
,
H.
,
Sun
,
Q.
, and
Huo
,
Y.
,
2012
, “
Rate Dependence of Temperature Fields and Energy Dissipations in Non-Static Pseudoelasticity
,”
Continuum Mech. Thermodyn.
,
24
(
4–6
), pp.
675
695
.10.1007/s00161-012-0254-9
17.
He
,
Y.
,
Yin
,
H.
,
Zhou
,
R.
, and
Sun
,
Q.
,
2010
, “
Ambient Effect on Damping Peak of NiTi Shape Memory Alloy
,”
Mater. Lett.
,
64
(
13
), pp.
1483
1486
.10.1016/j.matlet.2010.03.068
18.
He
,
Y.
, and
Sun
,
Q.
,
2011
, “
On Non-Monotonic Rate Dependence of Stress Hysteresis of Superelastic Shape Memory Alloy Bars
,”
Int. J. Solids Struct.
,
48
(
11–12
), pp.
1688
1695
.10.1016/j.ijsolstr.2011.02.017
19.
Yin
,
H.
,
Yan
,
Y.
,
Huo
,
Y.
, and
Sun
,
Q.
,
2013
, “
Rate Dependent Damping of Single Crystal CuAlNi Shape Memory Alloy
,”
Mater. Lett.
,
109
, pp.
287
290
.10.1016/j.matlet.2013.07.062
20.
Boyd
,
J.
, and
Lagoudas
,
D.
,
1996
, “
A Thermodynamical Constitutive Model for Shape Memory Materials. Part I. The Monolithic Shape Memory Alloy
,”
Int. J. Plast.
,
12
(
6
), pp.
805
842
.10.1016/S0749-6419(96)00030-7
21.
Coleman
,
B.
, and
Noll
,
W.
,
1963
, “
The Thermodynamics of Elastic Materials With Heat Conduction and Viscosity
,”
Arch. Ration. Mech. Anal.
,
13
(
1
), pp.
167
178
.10.1007/BF01262690
22.
Bouvet
,
C.
,
Calloch
,
S.
, and
Lexcellent
,
C.
,
2004
, “
A Phenomenological Model for Pseudoelasticity of Shape Memory Alloys Under Multiaxial Proportional and Nonproportional Loadings
,”
Eur. J. Mech., A/Solids
,
23
(
1
), pp.
37
61
.10.1016/j.euromechsol.2003.09.005
23.
Rice
,
J.
,
1968
, “
A Path Independent Integral and Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(2), pp.
379
386
.10.1115/1.3601206
24.
Hutchinson
,
J.
,
1974
, “
On Steady Quasi-Static Crack Growth
,” Division of Applied Sciences, Harvard University, Cambridge, MA, Technical Report No. DEAP S-8.
25.
Dean
,
R.
, and
Hutchinson
,
J.
,
1980
, “
Quasi-Static Steady Crack Growth in Small Scale Yielding
,” 12th National Symposium on Fracture Mechanics, St. Louis, MO, May 21–23,
ASTM-STP 700
, pp.
383
405
.10.1520/STP36982S
26.
Landis
,
C. M.
,
2003
, “
On the Fracture Toughness of Ferroelastic Materials
,”
J. Mech. Phys. Solids
,
51
(8), pp.
1347
1369
.10.1016/S0022-5096(03)00065-6
27.
Wang
,
J.
, and
Landis
,
C.
,
2004
, “
On the Fracture Toughness of Ferroelectric Ceramics With Electric Field Applied Parallel to the Crack Front
,”
Acta Mater.
,
52
(12), pp.
3435
3446
.10.1016/j.actamat.2004.03.041
28.
Wang
,
J.
, and
Landis
,
C.
,
2006
, “
Domain Switch Toughening in Polycrystalline Ferroelectrics
,”
J. Mater. Res.
,
21
(1), pp.
13
20
.10.1557/jmr.2006.0002
29.
Wang
,
J.
, and
Landis
,
C.
,
2006
, “
Effects of In-Plane Electric Fields on the Toughening Behavior of Ferroelectric Ceramics
,”
J. Mech. Mater. Struct.
,
1
(6), pp.
1075
1095
.
30.
Lagoudas
,
D.
, and
Bo
,
Z.
,
1999
, “
Thermomechanical Modeling of Polycrystalline SMAs Under Cyclic Loading, Part II: Material Characterization and Experimental Results for a Stable Transformation Cycle
,”
Int. J. Eng. Sci.
,
37
(
9
), pp.
1141
1173
.10.1016/S0020-7225(98)00114-1
31.
Machado
,
L.
,
2007
, “
Shape Memory Alloys for Vibration Isolation and Damping
,” Ph.D. thesis, Texas A&M University, College Station, TX.
You do not currently have access to this content.