An infinite elastically isotropic plate containing a circular inclusion with dilative eigenstrain is studied, and the critical condition for the axisymmetric buckling driven by the eigenstrain is derived analytically.
Issue Section:
Technical Briefs
1.
Eshelby
, J. D.
, 1957, “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,” Proc. R. Soc. London, Ser. A
0950-1207, 241
, pp. 376
–396
.2.
Mura
, T.
, 1982, Micromechanics of Defects in Solids
, Martinus Nijhoff
, The Hague, The Netherlands
.3.
Beom
, H. G.
, 1998, “Analysis of a Plate Containing an Elliptic Inclusion With Eigencurvatures
,” Arch. Appl. Mech.
0939-1533, 68
, pp. 422
–432
.4.
Beom
, H. G.
, and Earmme
, Y. Y.
, 1999, “The Elastic Field of an Elliptic Cylindrical Inclusion in a Laminate With Multiple Isotropic Layers
,” ASME J. Appl. Mech.
0021-8936, 66
, pp. 165
–171
.5.
Beom
, H. G.
, and Kim
, I. B.
, 1999, “Analysis of a Multilayered Plate Containing a Cuboidal Inclusion With Eigenstrains
,” Mech. Mater.
0167-6636, 31
, pp. 729
–741
.6.
Duong
, C. N.
, and Yu
, J.
, 2003, “Analysis of a Plate Containing a Polygon-Shape Inclusion With a Uniform Eigencurvature
,” ASME J. Appl. Mech.
0021-8936, 70
, pp. 404
–407
.7.
Yang
, K. J.
, Beom
, H. G.
, and Kang
, K. J.
, 2005, “Thermal Stress Analysis for an Inclusion With Nonuniform Temperature Distribution in an Infinite Kirchhoff Plate
,” J. Therm. Stresses
0149-5739, 28
, pp. 1123
–1144
.8.
Yang
, K. J.
, Lee
, K. Y.
, and Chang
, J. H.
, 2007, “Elastic Analysis for Defects in an Orthotropic Kirchhoff Plate
,” ASME J. Appl. Mech.
0021-8936, 74
, pp. 438
–446
.9.
Chia
, C. Y.
, 1980, Nonlinear Analysis of Plates
, McGraw-Hill
, New York
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.