The purpose of this paper is to suggest a linear theory of materials with memory, which gives a description for the similarities resulting when the various analytical and experimental methods used to reduce the creep and relaxation data are imposed on the observational changes in curvature that take place in both the creep compliance and relaxation modulus graphs. On a Log-Log graph both have one, two, or at most three pairs of changes in curvature depending on whether the material is a fluid or solid. These changes in curvature have been observed in many experiments and various regions have been discussed and classified. Section 1 gives a few of the many applications of fractional calculus to physical problems. In Sec. 2 an equation that contains both integration and differentiation is presented using geometrical observations about the relationship between the changes in curvature in the relaxation modulus and creep compliance based on published experiments. In Sec. 3 the generalized function approach to fractional calculus is given. In Sec. 4 a mechanical model is discussed. This model is able to share experimental data between the creep and relaxation functions, as well as the real and imaginary parts of the complex compliance or the complex modulus. This theory shares information among these three experimental methods into a unifying theory for solid materials when the loads are within the linear range. Under a limiting case, this theory can account for flow so that the material need not return to its original shape after the load is removed. The theory contains one physical parameter, which is related to the speed of sound and a group of phenomenological parameters that are functions of temperature and the composition of the material. These phenomenological parameters are relaxation times and creep times. This theory differs from the classical polynomial constitutive equations for linear viscoelasticity. It is a special case of Rabotnov’s equations and Torvik and Bagley’s fractional calculus polynomial equations, but it imposes symmetry conditions on the stress and strain when the material is a solid. Sections 56 are comments and conclusions, respectively. No experimental results are given at this time since this paper presents the foundations of materials with memory as related to experimental data. The introduction of experimental data to fit this theory will result in the breakdown of an important part of this research.

1.
Volterra
,
V.
, 1909, “
Sulle Equazioni Integro-Differenziali della Theoria dell’Elasticità
,”
Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Natur., Rend.
,
18
, pp.
295
300
.
2.
Volterra
,
V.
, 1913,
Lecons sur les Functions de Lignes
,
Gauthier-Villard
,
Paris
.
3.
Riesz
,
F.
, and
Sz.-Nagy
,
B.
, 1955,
Functional Analysis
,
Frederick Ungar Publishing
,
New York
.
4.
Gurtin
,
M. E.
, and
Sternberg
,
E.
, 1962, “
On the Linear Theory of Viscoelasticity
,”
Arch. Ration. Mech. Anal.
0003-9527,
11
, pp.
291
356
.
5.
Rabotnov
,
Y. N.
, 1980,
Elements of Hereditary Solid Mechanics
,
Mir Publishers
,
Moscow
.
6.
Koeller
,
R. C.
, 1984, “
Application of Fractional Calculus to the Theory of Viscoelasticity
,”
ASME J. Appl. Mech.
0021-8936,
51
, pp.
299
307
.
7.
Meshkov
,
S. I.
,
Pachevskaya
,
G. N.
,
Postnikov
,
V. S.
, and
Rossikhin
,
U. A.
, 1971, “
Integral Representations of εY-Functions and Their Application to Problems in Linear Viscoelasticity
,”
Int. J. Eng. Sci.
0020-7225,
9
, pp.
387
398
.
8.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
, 2007, “
Comparative Analysis of Viscoelastic Models Involving Fractional Derivatives of Different Orders
,”
Fractional Calculus Appl. Anal.
1311-0454,
10
, pp.
111
–121.
9.
Mainardi
,
F.
, and
Gorenflo
,
R.
, 2007, “
Time-Fractional Derivatives in Relaxation Processes: A Tutorial Survey
,”
Fractional Calculus Appl. Anal.
1311-0454,
10
, pp.
269
308
.
10.
Fraggstedt
,
M.
, 2006, “
Power Dissipation in Car Tyres
,” Thesis, Royal Institute of Technology, Stockholm, Sweden.
11.
Heibig
,
A.
, and
Palade
,
L. I.
, 2008, “
On the Rest State Stability of an Objective Fractional Derivative Viscoelastic Fluid Model
,”
J. Math. Phys.
0022-2488,
49
, p.
043101
.
12.
Beris
,
A. N.
, and
Edwards
,
B. J.
, 1993, “
On the Admissibility Criteria for Linear Viscoelastic Kernels
,”
Rheol. Acta
0035-4511,
32
, pp.
505
510
.
13.
Heymans
,
N.
, 2003, “
Constitutive Equations for Polymer Viscoelasticity Derived From Hierarchical Models in Cases of Failure of Time-Temperature Superposition
,”
Signal Process.
0165-1684,
83
, pp.
2345
2357
.
14.
Read
,
B. E.
, 1989, “
Mechanical Relaxation in Isotactic Polypropylene
,”
Polymer
0032-3861,
30
, pp.
1439
1445
.
15.
Sathiyanarayanan
,
S.
,
Sivakumar
,
S.
, and
Rao
,
C. L.
, 2005, “
Experimental and Modeling Study on Form 1 PVDF
,”
International Conference on Smart Materials Structures and Systems
, Bangalore, India, Paper No. ISSS-2005/SA-26, pp.
195
202
.
16.
Dîkmen
,
Ü.
, 2004, “
Modeling of Seismic Wave Attenuation in Soils by using Fractional Derivative Approach
,” Ph.D. thesis, Department of Geophysical Engineering, Ankara University, Turkey.
17.
Agrawal
,
O. P.
, 1999, “
An Analytical Scheme for Stochastic Dynamic Systems Containing Fractional Derivatives
,” ASME Paper No. DETC99/VIB-8238.
18.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
, 2008, “
Free Damped Vibration of a Oscillator Based on Rabotnov’s Model
,”
Mech. Time-Depend. Mater.
1385-2000,
12
, pp.
129
149
.
19.
Mainardi
,
F.
, 1995, “
The Time Fractional Diffusion-Wave Equation
, ”
Radiophys. Quantum Electron.
0033-8443,
38
, pp.
20
36
.
20.
Mainardi
,
F.
, 1996, “
The Fundamental Solution for the Fractional Diffusion-Wave Equation
,”
Appl. Math. Lett.
0893-9659,
9
, pp.
23
28
.
21.
Li
,
C.
,
Liao
,
X.
, and
Yu
,
J.
, 2003, “
Synchronization of Fractional Order Chaotic Systems
,”
Phys. Rev. E
1063-651X,
68
, p.
067203
.
22.
Maione
,
G.
, 2006, “
A Digital, Noninteger Order, Differentiator Using Laguerre Orthogonal Sequences
,”
Int. J. Intell. Contr. Syst.
,
11
, pp.
77
81
.
23.
Hara
,
H.
, and
Ikeda
,
N.
, 2005, “
Nonlinear Fokker-Planck Equations on a Curved Spacetime Surface and Their Applications
,”
Journal of the Korean Society
,
46
, pp.
651
656
.
24.
Metzler
,
R.
, and
Klafter
,
J.
, 2000, “
The Random Walk’s Guide to Anomalous Diffusion: A Fractional Dynamics Approach
,”
Phys. Rep.
0370-1573,
339
, pp.
1
77
.
25.
Craiem
,
D.
, and
Armentano
,
R.
, 2007, “
A Fractional Derivative Model to Describe Arterial Viscoelasticity
,”
Biorheology
0006-355X,
44
, pp.
251
263
.
26.
Nutting
,
P. G.
, 1921, “
A New General Law of Deformation
,”
J. Franklin Inst.
0016-0032,
191
, pp.
679
685
.
27.
Catsiff
,
E.
, and
Tobolsky
,
A. V.
, 1955, “
Stress-Relaxation of Polyisobutylene in the Transition Region
,”
J. Colloid Interface Sci.
0021-9797,
10
, pp.
375
392
.
28.
Rabotnov
,
Y. N.
, 1953, “
Some Problems of the Theory of Creep
,”
National Advisory Committee for Aeronautics
, Technical Memorandum No. 1353.
29.
Flügge
,
W.
, 1975,
Viscoelasticity
, 2nd ed.,
Springer-Verlag
,
Berlin
30.
Zener
,
C. M.
, 1948,
Elasticity and Unelasticity of Metals
,
University of Chicago Press
,
Chicago
.
31.
Tobolsky
,
A. V.
, and
Catsiff
,
E.
, 1956, “
Elastoviscous Properties of Polyisobutylene (and Other Amorphous Polymers) From Stress-Relaxation Studies. IX. A Summary of Results
,”
J. Polym. Sci.
0022-3832,
19
, pp.
111
121
.
32.
Lee
,
G.
,
Madigosky
,
W. M.
and
Eynck
,
J. J.
, 1979, “
Dynamic Viscoelastic Properties of Materials
,”
Naval Surface Weapons Center
, Silver Springs, MD, Report No. TR-78-138.
33.
Caputo
,
M.
, and
Mainardi
,
F.
, 1971, “
A New Dissipation Model Based on Memory Mechanism
,”
Pure Appl. Geophys.
0033-4553,
91
, pp.
134
147
.
34.
Bagley
,
R. L.
, and
Torvik
,
P. J.
, 1984, “
On the Appearance of the Fractional Derivative in the Behavior of Real Materials
,”
ASME J. Appl. Mech.
0021-8936,
51
, pp.
294
298
.
35.
Bagley
,
R. L.
, and
Torvik
,
P. J.
, 1983, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
0148-6055,
27
, pp.
201
210
.
36.
Rogers
,
L.
, 1983, “
Operators and Fractional Derivatives for Viscoelastic Constitutive Equations
,”
J. Rheol.
0148-6055,
27
, pp.
351
372
.
37.
Scott Blair
,
G. W.
, 1947, “
The Role of Psychophysics in Rheology
,”
J. Colloid Sci.
0095-8522,
2
, pp.
21
32
.
38.
Koeller
,
R. C.
, 2007, “
Toward an Equation of State for Solid Materials With Memory by Use of the Half-Order Derivative
,”
Acta Mech.
0001-5970,
191
, pp.
125
133
.
39.
Heymans
,
N.
, and
Podlubny
,
I.
, 2006, “
Physical Interpretation of Initial Conditions for Fractional Differential Equations With Riemann-Liouville Fractional Derivatives
,”
Rheol. Acta
0035-4511,
45
, pp.
765
771
.
40.
Podlubny
,
I.
, 1999, “
Fractional Differential Equations
,”
Mathematics in Science and Engineering
, Vol.
198
,
Academic
, New York.
41.
Oldham
,
K. B.
, and
Spanier
,
J.
, 1974,
The Fractional Calculus
,
Academic
,
New York
.
42.
Ross
,
B.
, 1975, “
A Brief History and Exposition of the Fundamental Theory of the Fractional
,”
Lect. Notes Math.
0075-8434,
457
, pp.
1
36
.
43.
Miller
,
K. S.
, and
Ross
,
B.
, 1993,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley
,
New York
.
44.
Gel’fand
,
I. M.
, and
Shilov
,
G. E.
, 1964,
Generalized Functions: Properties and Operations
, Vol.
1
,
Academic
,
New York
.
45.
Koeller
,
R. C.
, 1986, “
Polynomial Operators, Stieltjes Convolution, and Fractional Calculus in Hereditary Mechanics
,”
Acta Mech.
0001-5970,
58
, pp.
251
264
.
46.
Caputo
,
M.
, and
Mainardi
,
F.
, 1971, “
Linear Models of Dissipation in Anelastic Solids
,”
Riv. Nuovo Cimento
0035-5917,
1
pp.
161
198
.
47.
Mittag-Leffler
,
G. M.
, 1905, “
Sur la représentation analytique d’une branche uniforme d’une function monogène
,”
Acta Math.
0001-5962,
29
, pp.
101
182
.
48.
Truesdell
,
C.
, and
Noll
,
W.
, 1965,
The Non-Linear Field Theories of Mechanics, Encyclopedia of Physics
, Vol.
3
,
Springer-Verlag
,
Berlin
.
49.
Erdélyi
,
A.
,
Magnus
,
W.
,
Oberhettinger
,
F.
, and
Tricomi
,
F. G.
, 1957,
Higher Transcendental Function
, Vol.
3
,
McGraw-Hill
,
New York
.
50.
Welch
,
S. W. J.
,
Rorrer
,
R. A. L.
, and
Duren
,
R. G.
, 1999, “
Application of Time-Based Fractional Calculus Methods to Viscoelastic Creep and Stress Relaxation of Materials
,”
Mech. Time-Depend. Mater.
1385-2000,
3
, pp.
279
303
.
51.
Bagley
,
R. L.
, 1991, “
The Thermorheologically Complex Material
,”
Int. J. Eng. Sci.
0020-7225,
29
, pp.
797
806
.
52.
Rabotnov
,
Y. N.
, 1948, “
Some Problems of Creep Theory
,”
Vestn. Mosk. Univ., Ser. 1: Mat., Mekh.
0579-9368,
10
, pp.
81
91
.
You do not currently have access to this content.