In order to realize a plan for a hypersonic aircraft, development of a smart heat-resisting plate possible to control a thermal stress has been required because the safety of structural members must be secured even if they are exposed to a severe thermal loading beyond an estimated load. In view of such a background, this paper deals with a control problem of a thermal stress in a multilayer composite circular disk consisting of a structural layer and piezoceramic layers with concentrically arranged electrodes. When a heating temperature distribution acts on the structural layer surface, the maximum thermal stress in the structural layer can be suppressed by applying appropriate voltages to the electrodes. This thermo-elastic problem has been theoretically analyzed by employing the potential function techniques. Utilizing the analytical results, the nonlinear optimization problem for determining the applied voltages is transformed into a linear programming problem and then the optimum solution is successfully obtained. Based on the obtained solutions, the structure of a composite disk has been designed in order to demonstrate the function of stress control to the fullest extent possible. Finally, numerical results for the stresses before and after applying the determined voltages as well as for the structure design of the composite disk and the suppression ratio of the maximum thermal stress are shown in graphical and tabular forms. It is seen from the numerical results that the maximum thermal stress can be reduced by about 34% when the structure of the composite disk is designed optimally.

1.
Saravanos
,
D. A.
, and
Heyliger
,
P. R.
, 1999, “
Mechanics and Computational Models for Laminated Piezoelectric Beams, Plates, and Shells
,”
Appl. Mech. Rev.
0003-6900,
52
(
10
), pp.
305
320
.
2.
Wang
,
J.
, and
Yang
,
J.
, 2000, “
Higher-Order Theories of Piezoelectric Plates and Applications
,”
Appl. Mech. Rev.
0003-6900,
53
(
4
), pp.
87
99
.
3.
Rao
,
S. S.
, and
Sunar
,
M.
, 1994, “
Piezoelectricity and Its Use in Disturbance Sensing and Control of Flexible Structures: A Survey
,”
Appl. Mech. Rev.
0003-6900,
47
(
4
), pp.
113
123
.
4.
Sunar
,
M.
, and
Rao
,
S. S.
, 1999, “
Recent Advances in Sensing and Control of Flexible Structures Via Piezoelectric Materials Technology
,”
Appl. Mech. Rev.
0003-6900,
52
(
1
), pp.
1
16
.
5.
Irschik
,
H.
, 2002, “
A Review on Static and Dynamic Shape Control of Structures by Piezoelectric Actuation
,”
Appl. Mech. Rev.
0003-6900,
24
(
1
), pp.
5
11
.
6.
Tauchert
,
T. R.
,
Ashida
,
F.
, and
Noda
,
N.
, 1999, “
Recent Developments in Piezothermo-Elasticity: Inverse Problems Relevant to Smart Structures
,”
JSME Int. J., Ser. A
1340-8046,
42
(
4
), pp.
452
458
.
7.
Tauchert
,
T. R.
,
Ashida
,
F.
,
Noda
,
N.
,
Adali
,
S.
, and
Verijenko
,
V.
, 2000, “
Developments in Thermopiezoelasticity With Relevance to Smart Composite Structures
,”
Compos. Struct.
0263-8223,
48
(
1–3
), pp.
31
38
.
8.
Tauchert
,
T. R.
, and
Ashida
,
F.
, 2003, “
Control of Transient Response in Intelligent Piezothermoelastic Structures
,”
J. Therm. Stresses
,
26
(
6
), pp.
559
582
. 0149-5739
9.
Reddy
,
J. N.
, and
Cheng
,
Z.-Q.
, 2001, “
Three-Dimensional Solutions of Smart Functionally Graded Plates
,”
ASME J. Appl. Mech.
0021-8936,
68
(
2
), pp.
234
241
.
10.
Ootao
,
Y.
, and
Tanigawa
,
Y.
, 2001, “
Control of the Transient Thermoelastic Displacement of a Functionally Graded Rectangular Plate Bonded to a Piezoelectric Plate Due to Nonuniform Heating
,”
Acta Mech.
0001-5970,
148
(
1–4
), pp.
17
33
.
11.
Ootao
,
Y.
, and
Tanigawa
,
Y.
, 2001, “
Control of Transient Thermoelastic Displacement of a Two-Layered Composite Plate Constructed of Isotropic Elastic and Piezoelectric Layers Due to Nonuniform Heating
,”
Arch. Appl. Mech.
0939-1533,
71
(
4-5
), pp.
207
220
.
12.
Ishihara
,
M.
, and
Noda
,
N.
, 2002, “
Dynamic Behavior of a Piezothermoelastic Laminate Considering the Effect of Transverse Shear
,”
Smart Mater. Struct.
0964-1726,
11
(
2
), pp.
202
208
.
13.
Ishihara
,
M.
, and
Noda
,
N.
, 2003, “
Nonlinear Dynamic Behavior of a Piezothermoelastic Laminate Considering the Effect of Transverse Shear
,”
J. Therm. Stresses
,
26
(
11–12
), pp.
1093
1112
. 0149-5739
14.
Yang
,
J.
,
Kitipornchai
,
S.
, and
Liew
,
K. M.
, 2004, “
Non-Linear Analysis of the Thermo-Electro-Mechanical Behaviour of Shear Deformable FGM Plates With Piezoelectric Actuators
,”
Int. J. Numer. Methods Eng.
0029-5981,
59
(
12
), pp.
1605
1632
.
15.
Oh
,
I.-K.
, 2005, “
Thermopiezoelastic Nonlinear Dynamics of Active Piezolaminated Plates
,”
Smart Mater. Struct.
0964-1726,
14
(
4
), pp.
823
834
.
16.
Choi
,
J.-S.
,
Ashida
,
F.
, and
Noda
,
N.
, 1997, “
Control of Thermally Induced Elastic Displacement of an Isotropic Structural Plate Bonded to a Piezoelectric Ceramic Plate
,”
Acta Mech.
,
122
(
1–4
), pp.
49
63
. 0001-5970
17.
Tauchert
,
T. R.
, and
Ashida
,
F.
, 1999, “
Application of the Potential Function Method in Piezothermoelasticity: Solutions for Composite Circular Plates
,”
J. Therm. Stresses
0149-5739,
22
(
4-5
), pp.
387
419
.
18.
Ashida
,
F.
, and
Noda
,
N.
, 1997, “
Control of Transient Thermoelastic Displacement of an Isotropic Plate Associated With a Piezoelectric Ceramic Plate
,”
J. Therm. Stresses
,
20
(
3-4
), pp.
407
427
. 0149-5739
19.
Ashida
,
F.
, and
Tauchert
,
T. R.
, 2002, “
Control of Transient Thermoelastic Displacement in a Composite Disk
,”
J. Therm. Stresses
,
25
(
2
), pp.
99
121
. 0149-5739
20.
Ashida
,
F.
,
Tauchert
,
T. R.
,
Sakata
,
S.
, and
Yamashita
,
Y.
, 2003, “
Control of Transient Deformation in a Heated Intelligent Composite Disk
,”
Smart Mater. Struct.
,
12
(
5
), pp.
825
835
. 0964-1726
21.
Ashida
,
F.
,
Sakata
,
S.
,
Tauchert
,
T. R.
, and
Yoshida
,
S.
, 2007, “
Optimum Design of a Piezo-Composite Disk for Control of Thermoelastic Displacement Distribution
,”
J. Therm. Stresses
,
30
(
6
), pp.
559
586
. 0149-5739
22.
Ashida
,
F.
,
Tauchert
,
T. R.
,
Sakata
,
S.
, and
Yoshida
,
S.
, 2008, “
Control of Thermoelastic Deformation in a Smart Composite Disk by a Stepwise Applied Electric Potential Distribution
,”
Acta Mech.
,
195
(
1–4
), pp.
13
26
. 0001-5970
23.
Ashida
,
F.
,
Sakata
,
S.
, and
Matsumoto
,
K.
, 2007, “
Control of Thermal Stress in a Piezo-Composite Disk
,”
J. Therm. Stresses
,
30
(
9-10
), pp.
1025
1040
. 0149-5739
24.
Ashida
,
F.
,
Noda
,
N.
, and
Okumura
,
I. A.
, 1993, “
General Solution Technique for Transient Thermoelasticity of Transversely Isotropic Solids in Cylindrical Coordinates
,”
Acta Mech.
,
101
(
1–4
), pp.
215
230
. 0001-5970
25.
Ashida
,
F.
,
Tauchert
,
T. R.
, and
Noda
,
N.
, 1994, “
Potential Function Method for Piezothermoelastic Problems of Solids of Crystal Class 6 mm in Cylindrical Coordinates
,”
J. Therm. Stresses
0149-5739,
17
(
3
), pp.
361
375
.
You do not currently have access to this content.