Abstract

The effects of small vibrations on particle motion in a viscous fluid cell have been investigated experimentally and theoretically. A steel particle was suspended by a thin wire at the center of a fluid cell, and the cell was vibrated horizontally using an electromagnetic actuator and an air bearing stage. The vibration-induced particle amplitude measurements were performed for different fluid viscosities (58.0cP and 945cP), and cell vibration amplitudes and frequencies. A viscous fluid model was also developed to predict the vibration-induced particle motion. This model shows the effect of fluid viscosity compared to the inviscid model, which was presented earlier by Hassan et al. (2004, “The Effects of Vibrations on Particle Motion in an Infinite Fluid Cell,” ASME J. Appl. Mech., 73(1), pp. 72–78) and validated using data obtained for water. The viscous model with modified drag coefficients is shown to predict well the particle amplitude data for the fluid viscosities of 58.5cP and 945cP. While there is a resonance frequency corresponding to the particle peak amplitude for oil (58.0cP), this phenomenon disappeared for glycerol (945cP). This disappearance of resonance phenomenon is explained by referring to the theory of mechanical vibrations of a mass-spring-damper system. For the sinusoidal particle motion in a viscous fluid, the effective drag force has been obtained, which includes the virtual mass force, drag force proportional to the velocity, and the Basset or history force terms.

1.
Gamache
,
O.
,
Nakamura
,
H.
, and
Kawaji
,
M.
, 2005, “
Experimental Investigation of Marangoni Convection and Vibration-Induced Crystal Motion During Protein Crystal Growth
,”
Microgravity Sci. Technol.
0938-0108,
16
(
1
), pp.
342
347
.
2.
Stokes
,
G. G.
, 1851,
Mathematical and Physical Papers
, Vol.
3
,
Johnson Reprint Corp.
,
New York
, pp.
25
35
.
3.
Basset
,
A. B.
, 1888,
A Treatise on Hydrodynamics
, Vol.
2
,
Deighton Bell and Co Press
,
Cambridge, UK
, Chap. 21.
4.
Boussinesq
,
J. V.
, 1885, “
Sur la Resistance qu’oppose un Liquide Indefeni au Repos, sans Pesanteur, au Mouvememt d’une Sphere Solide qu’il Mouille sur toute sa Surface
,”
Acad. Sci., Paris, C. R.
0001-4036,
100
, pp.
935
937
.
5.
Oseen
,
C. W.
, 1910, “
Uber die Stokes’sche Formel und Uber eine verwandte Aufgabe in der Hydrodynamik
,”
Ark. Mat., Astron. Fys.
0365-4133,
6
, pp.
29
45
.
6.
Proudman
,
I.
, and
Pearson
,
J. R. A.
, 1957, “
Expansion at Small Reynolds Numbers for the Flow Past a Sphere and a Cylinder
,”
J. Fluid Mech.
0022-1120,
2
, pp.
237
262
.
7.
Odar
,
F.
, 1963, “
Forces on a Sphere Accelerating in a Viscous Fluid
,”
J. Fluid Mech.
0022-1120,
18
, pp.
302
314
.
8.
Baird
,
M. H. I.
,
Senior
,
M. G.
, and
Thompson
,
R. J.
, 1967, “
Terminal Velocities of Spherical Particles in a Vertically Oscillating Liquid
,”
Chem. Eng. Sci.
0009-2509,
22
, pp.
551
558
.
9.
Ikeda
,
S.
, 1989, “
Fall Velocity of Single Spheres in Vertically Oscillating Fluids
,”
Fluid Dyn. Res.
0169-5983,
5
, pp.
203
216
.
10.
Jameson
,
G. J.
, and
Davidson
,
J. F.
, 1966, “
The Motion of a Bubble in a Vertically Oscillating Liquid: Theory for an Inviscid Liquid and Experimental Results
,”
Chem. Eng. Sci.
0009-2509,
21
, pp.
29
33
.
11.
Tunstall
,
E. B.
, and
Houghton
,
G.
, 1968, “
Retardation of Falling Spheres by Hydrodynamic Oscillations
,”
Chem. Eng. Sci.
0009-2509,
23
, pp.
1067
1081
.
12.
Molinier
,
J.
,
Kuychoukov
,
G.
, and
Angelino
,
H.
, 1971, “
Etude du Mouvement d’une Sphere dans un Liquide pulse
,”
Chem. Eng. Sci.
0009-2509,
26
, pp.
1401
1412
.
13.
Clift
,
R. J.
,
Grace
,
R.
, and
Weber
,
M. E.
, 1978,
Bubbles, Drops and Particles
,
Academic
,
London
.
14.
Feinman
,
J.
, 1964, “
An Experimental Study of the Behavior of Solid Spheres in Oscillating Liquids
,” Ph.D. thesis, University of Pittsburgh, Pittsburgh, PA.
15.
Houghton
,
G.
, 1961, “
The Behavior of Particles in a Sinusoidal Vector Field
,”
Proc. R. Soc. London, Ser. A
1364-5021,
272
, pp.
33
43
.
16.
Mei
,
R.
,
Lawrence
,
J.
, and
Adrian
,
J.
, 1991, “
Unsteady Drag on a Sphere at Finite Reynolds Number With Small Fluctuations in the Free-Stream Velocity
,”
J. Fluid Mech.
0022-1120,
233
, pp.
613
631
.
17.
Maxey
,
M.
, and
Riley
,
J.
, 1982, “
Equation for a Small Rigid Sphere in a Nonuniform Flow
,”
Phys. Fluids
0031-9171,
26
, pp.
883
889
.
18.
Tchen
,
C. M.
, 1947, “
Mean Value and Correlation Problems Connected With the Motion of Small Particles Suspended in a Turbulent Fluid
,” Ph.D. thesis, Delft University, Delft, The Netherlands.
19.
Lovalenti
,
M.
, and
Brady
,
J.
, 1993, “
The Hydrodynamic Force on a Rigid Particle Undergoing Arbitrary Time-Dependent Motion at Small Reynolds Number
,”
J. Fluid Mech.
0022-1120,
256
, pp.
561
605
.
20.
Abbad
,
M.
, and
Souhar
,
M.
, 2004, “
Experimental Investigation of the History Force Acting on Oscillating Fluid Spheres at Low Reynolds Number
,”
Phys. Fluids
1070-6631,
16
, pp.
3808
3817
.
21.
Coimbra
,
C. F. M.
, and
Rangel
,
R. H.
, 2001, “
Spherical Particle Motion in Harmonic Stokes Flows
,”
AIAA J.
0001-1452,
39
(
9
), pp.
1673
1682
.
22.
Hassan
,
S.
,
Lyubimova
,
T. P.
,
Lyubimov
,
D. V.
, and
Kawaji
,
M.
, 2006, “
The Effects of Vibrations on Particle Motion in an Infinite Fluid Cell
,”
ASME J. Appl. Mech.
0021-8936,
73
(
1
), pp.
72
78
.
23.
Hassan
,
S.
,
Lyubimova
,
T. P.
,
Lyubimov
,
D. V.
, and
Kawaji
,
M.
, 2006, “
The Effects of Vibrations on Particle Motion in a Semi-Infinite Fluid Cell
,”
ASME J. Appl. Mech.
0021-8936,
73
(
4
), pp.
610
621
.
24.
Hassan
,
S.
,
Kawaji
,
M.
,
Lyubimova
,
T. P.
, and
Lyubimov
,
D. V.
, 2006, “
Effects of Vibrations on Particle Motion Near a Wall: Existence of Attraction Force
,”
Int. J. Multiphase Flow
0301-9322,
32
, pp.
1027
1054
.
25.
Rao
,
S. S.
, 1995,
Mechanical Vibrations
, 3rd ed.,
Addison-Wesley
,
New York
.
You do not currently have access to this content.