The aim of this experimental study is to improve the energy absorption capacity of tubular metallic structures during their plastic buckling by increasing the strength properties of materials. Based on a novel idea, a change in the plastic strength of materials could be predictable through the loading path complexity concept. An original experimental device, which represents a patent issue, is developed. From a uniaxial loading, a biaxial (combined compression–torsion) loading path is generated by means of this device. Tests are carried out to investigate the biaxial plastic buckling behavior of several tubular structures made from copper, aluminum, and mild steel. The effects of the loading path complexity, the geometrical parameters of the structures, and loading rates (notably the tangential one) on the plastic flow mechanism, the mean collapse load, and the energy absorbed are carefully analyzed. The results related to the copper and aluminum metals show that the plastic strength properties of the tubes crushed biaxially change with the torsional component rate. This emphasizes that the energy absorption improves with increasing the applied loading complexity. However, the energy absorbed data for the mild steel tubular structures do not demonstrate the same sensitivity to the quasi-static loading path complexity.

1.
Ezra
,
A. A.
, and
Fay
,
R. J.
, 1972, “
An Assessment of Energy Absorbing Devices for Prospective Use in Aircraft Impact Situations
,”
Dynamic Response of Structures
,
G.
Hermann
and
N.
Perrone
, eds.,
Pergamon
,
New York
, p.
225
.
2.
Abramowicz
,
W.
, and
Jones
,
N.
, 1986, “
Dynamic Progressive Buckling of Circular and Square Tubes
,”
Int. J. Impact Eng.
0734-743X,
4
, p.
243
.
3.
Johnson
,
W.
, and
Reid
,
S. R.
, 1986, “
Update to Metallic Energy Dissipating Systems
,”
Appl. Mech. Rev.
0003-6900,
31
, pp.
277
288
.
4.
Al-Ghamdi
,
A. A. A.
, 2001, “
Collapsible Impact Energy Absorbers: An Overview
,”
Thin-Walled Struct.
0263-8231,
39
, p.
189
.
5.
Bastawros
,
A. F.
,
Bart-Smith
,
H.
, and
Evans
,
A. G.
, 2000, “
Experimental Analysis of Deformation Mechanisms in a Closed-Cell Aluminum Alloy Foam
,”
J. Mech. Phys. Solids
0022-5096,
48
, p.
301
.
6.
Tan
,
P. J.
,
Reid
,
S. R.
,
Harrigan
,
J. J.
,
Zou
,
Z.
, and
Li
,
S.
, 2005, “
Dynamic Compressive Strength Properties of Aluminum Foams: Part I—Experimental Data and Observations
,”
J. Mech. Phys. Solids
0022-5096,
53
, p.
2174
.
7.
Hanssen
,
A. G.
,
Langseth
,
M.
, and
Hopperstad
,
O. S.
, 2000, “
Static and Dynamic Crushing of Circular Aluminum Extrusions With Aluminum Foam Filler
,”
Int. J. Impact Eng.
0734-743X,
24
, p.
457
.
8.
Harte
,
A. M.
,
Norman
,
A. F.
, and
Ashby
,
M. F.
, 2000, “
Energy Absorption of Foam-Filled Circular Tubes With Braided Composites Walls
,”
Eur. J. Mech. A/Solids
0997-7538,
19
, p.
31
.
9.
Lopatnikov
,
S. L.
,
Gama
,
B. A.
,
Haque
,
M. D. J.
,
Krauthauser
,
C.
, and
Gillespie
,
J. W.
, Jr.
, 2004, “
High-Velocity Plate Impact of Metal Foams
,”
Int. J. Impact Eng.
0734-743X,
30
, p.
421
.
10.
Reid
,
S. R.
, 1993, “
Plastic Deformation Mechanisms in Axially Compressed Metal Tubes Used as Impact Energy Absorbers
,”
Int. J. Mech. Sci.
0020-7403,
35
, p.
1035
.
11.
Jones
,
N.
, 1998, “
Some Recent Developments and Future Trends in Thin-Walled Sections for Structural Crashworthiness
,”
Thin-Walled Struct.
0263-8231,
32
, p.
231
.
12.
Abdul-Latif
,
A.
,
Baleh
,
R.
, and
Aboura
,
Z.
, 2006, “
Effect of Plastic Flow Mechanisms on the Large Deformation of Hallow Tubes Loaded Axially
,”
Int. J. Solids Struct.
0020-7683,
43
, p.
1543
.
13.
Baleh
,
R.
, 2004, “
Flambage Plastique Quasi-Statique et Dynamique de Structures Tubulaires Métalliques Sous Sollicitations Simple et Complexe-Système d’Absorption d’Énergie-via un Nouveau Dispositif Expérimental
,” thèse de doctorat, Université de Technologie de Troyes, France.
14.
Abdul-Latif
,
A.
, and
Baleh
,
R.
, 2006, “
Biaxial Plastic Buckling of Circular Shells Under Dynamic Loadings
,”
J. Appl. Mech.
0021-8936, submitted.
15.
Baleh
,
R.
, and
Abdul
-
Latif
, 2006, “
On the Biaxial Plastic Buckling with Large Torsional Rate of Change
,” L3M, Université Paris 8, Rep. No. 012.
You do not currently have access to this content.