An analysis of large deformations of flexible membrane structures within the tension field theory is considered. A modification of the finite element procedure by Roddeman et al. (Roddeman, D. G., Drukker, J., Oomens, C. W. J., Janssen, J. D., 1987, ASME J. Appl. Mech. 54, pp. 884–892) is proposed to study the wrinkling behavior of a membrane element. The state of stress in the element is determined through a modified deformation gradient corresponding to a fictive nonwrinkled surface. The new model uses a continuously modified deformation gradient to capture the location orientation of wrinkles more precisely. It is argued that the fictive nonwrinkled surface may be looked upon as an everywhere-taut surface in the limit as the minor (tensile) principal stresses over the wrinkled portions go to zero. Accordingly, the modified deformation gradient is thought of as the limit of a sequence of everywhere-differentiable tensors. Under dynamic excitations, the governing equations are weakly projected to arrive at a system of nonlinear ordinary differential equations that is solved using different integration schemes. It is concluded that implicit integrators work much better than explicit ones in the present context.

1.
Wagner
,
H.
, 1929, “
Flat Sheet Metal Girder With Very Thin Metal Web
,”
In Zeitschriftfür Flugtechnik und Motorluftschiffahrt
20
, pp.
200
207
.
2.
Mansfield
,
E. H.
, 1970, “
Load Transfer via a Wrinkled Membrane
,”
Proc. R. Soc. London, Ser. A
1364-5021
316
, pp.
269
289
.
3.
Pipkin
,
A. C.
, 1986, “
The Relaxed Energy Density for Isotropic Elastic Membrane
,”
IMA J. Appl. Math.
0272-4960
36
, pp.
85
99
.
4.
Miller
,
R. K.
,
Hedgepeth
,
J. M.
,
Weingarten
,
V. I.
,
Das
,
P.
, and
Kahyai
,
S.
, 1985, “
Finite Element Analysis of Partly Wrinkled Membranes
,”
Comput. Struct.
0045-7949
20
, pp.
631
639
.
5.
Stein
,
M.
, and
Hedgepeth
,
J. M.
, 1961, “
Analysis of Partly Wrinkled Membranes
,” Tech. Rep. NASA TN D-813.
6.
Wu
,
C. H.
, 1978, “
Nonlinear Wrinkling of Nonlinear Membranes of Revolution
,”
ASME J. Appl. Mech.
0021-8936
45
, pp.
533
538
.
7.
Roddeman
,
D. G.
,
Drukker
,
J.
,
Oomens
,
C. W. J.
, and
Janssen
,
J. D.
, 1987, “
The Wrinkling of Thin Membranes: Part I—Theory; Part II—Numerical Analysis
,”
ASME J. Appl. Mech.
0021-8936
54
, pp.
884
892
.
8.
Lu
,
K.
,
Accorsi
,
M.
, and
Leonard
,
J.
, 2001, “
Finite Element Analysis of Membrane Wrinkling
,”
Int. J. Numer. Methods Eng.
0029-5981
50
, pp.
1017
1038
.
9.
Epstein
,
M.
, and
Forcinito
,
M. A.
, 2001, “
Anisotropic Membrane Wrinkling: Theory and Analysis
,”
Int. J. Solids Struct.
0020-7683
38
, pp.
5253
5272
.
10.
Raible
,
T.
,
Tegeler
,
K.
,
Löhnert
,
S.
, and
Wriggers
,
P.
, 2005, “
Development of a Wrinkling Algorithm for Orthotropic Membrane Materials
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
194
, pp.
2550
2568
.
11.
Graves
,
L M.
, 1939, “
The Weierstrass Condition for Multiple Integral Variation Problems
,”
Duke Math. J.
0012-7094
5
, pp.
556
591
.
12.
Young
,
L. C.
, 1969, “
Lectures on Calculus of Variation and Optimal Control Theory
,
W. B. Saunders
,
Philadelphia
.
13.
Roy
,
D.
, and
Kumar
,
R.
, 2005, “
A Multi-Step Transversal Linearization (MTL) Method in Non-Linear Structural Dynamics
,”
J. Sound Vib.
0022-460X
287
, pp.
203
226
.
You do not currently have access to this content.