The problem of the wrinkling of plane isotropic membranes characterized by a Fung type constitutive model in biaxial tension has been formulated and solved within the framework of finite strain hyperelasticity. The formulation follows the approach of Pipkin [Pipkin, A.C., 1986, IMA J. Appl. Math., 36, pp. 85–99; 1994, ibid., 52, pp. 297–308], and the out of plane geometric nonlinearities are treated as constitutive nonlinearities through a modification of the elastic potential. The wrinkling criteria are based on the natural contraction of a membrane in simple tension. Both the natural contraction and the modified elastic potential are defined in closed form. The model has been implemented in a finite element code and the numerical solution validated using study cases with analytical solution. Applications are presented that simulate the response of stretched membranes, where distinct regions of behavior (taut, wrinkled, and slack or inactive) develop during loading, and a simple procedure of reconstructive surgery, characterized by the excision of a circular portion of the skin and the suture of the wound edges, where the wrinkling of the skin causes the extrusion of the edges (dog-ear formation).

1.
Barsotti
,
R.
,
Ligaro
,
S. S.
, and
Royer-Carfagni
,
G.
, 2001, “
The Web Bridge
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
5253
5272
.
2.
Cerda
,
K.
,
Ravi-Chandar
,
K.
, and
Mahadevan
,
L.
, 2002, “
Wrinkling of an Elastic Sheet Under Tension
,”
Nature
0028-0836
419
, pp.
579
580
.
3.
Coleman
,
W. P.
, III
,
Colon
,
G. A.
, and
Davis
,
R. S.
, 1983,
Outpatient Surgery of the Skin
,
Medical examination
,
New Hyde Park, NY
4.
Tong
,
P.
, and
Fung
,
Y. C.
, 1976, “
The Stress-Strain Relationships for the Skin
,”
J. Biomech.
0021-9290,
9
, pp.
649
657
.
5.
Fung
,
Y. C.
, 1984,
Biomechanics—Mechanical Properties of Living Tissues
,
Springer
,
New York
.
6.
Taylor
,
R. T.
, 2001,
Finite Element Analysis Program (FEAP)
,
University of California
,
Berkeley, CA
.
7.
Gambarotta
,
L.
,
Massabò
,
R.
,
Morbiducci
,
R.
,
Raposio
,
G.
, and
Santi
,
P.
, 2005, “
In Vivo Experimental Testing and Model Identification of Human Scalp Skin
,”
J. Biomech.
0021-9290,
38
, pp.
2237
2247
.
8.
Ciarlet
,
P. G.
, 1988,
Mathematical Elasticity
,
North–Holland
,
Amsterdam
.
9.
Holzapfel
,
G. A.
, 2001,
Nonlinear Solid Mechanics
,
Wiley and Sons
,
West Sussex
.
10.
Pipkin
,
A. C.
, 1986, “
The Relaxed Energy Density for Isotropic Elastic Membranes
,”
IMA J. Appl. Math.
0272-4960,
36
, pp.
85
99
.
11.
Pipkin
,
A. C.
, 1994, “
Relaxed Energy Density for Large Deformations of Membranes
,”
IMA J. Appl. Math.
0272-4960,
52
, pp.
297
308
.
12.
Wu
,
C. H.
, and
Canfield
,
T. R.
, “
Wrinkling in Finite Plane-Stress Theory
,”
Q. Appl. Math.
0033-569X, pp.
179
199
.
13.
Steigmann
,
D. J.
, 1990, “
Tension-Field Theory
,”
Proc. R. Soc. London, Ser. A
0950-1207,
429
, pp.
141
173
.
14.
Wagner
,
H.
, 1970, “
Flat Sheet Metal Girder With Very Thin Metal Web
,” translations J. Vanier,
Technical Memorandums of the National Advisory Committee for Aeronautics
, Washington, DC, February, vol.
604
.
15.
Mansfield
,
E. H.
, “
Load Transfer Via a Wrinkled Membrane
.”
Proceedings of the Royal Society
,
London
,
316
, pp.
269
289
.
16.
Mansfield
,
E. H.
, “
The Bending and Stretching of Plates
.” Macmillan, New York.
17.
Steigmann
,
D. J.
, 2005 “
Puncturing a Thin Elastic Sheet
,”
Int. J. Non-Linear Mech.
0020-7462,
40
, pp.
255
270
.
18.
Im
,
S.
, and
Kang
,
S.
, 1997, “
Finite Element Analysis of Wrinkling Membranes
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
263
269
.
19.
Rodemman
,
D. G.
, 1991, “
Finite-Element Analysis of Wrinkling Membranes
,”
Commun. Appl. Numer. Methods
0748-8025,
7
(
4
), pp.
299
307
.
20.
Rodemman
,
D. G.
,
Drukker
,
J.
, and
Oomens
,
C. W. J.
, 1987, “
The Wrinkling of Thin Membranes. 2 Numerical—Analysis
,”
ASME J. Appl. Mech.
0021-8936,
54
, pp.
888
892
.
21.
Contri
,
P.
, and
Schrefler
,
B. A.
, 1988, “
A Geometrically Nonlinear Finite Element Analysis of Wrinkled Membrane Surfaces by No-Compression Material Model
,”
Commun. Appl. Numer. Methods
0748-8025,
4
, pp.
5
15
.
22.
Stanuszek
,
M.
, 2003, “
FEM Analysis of Large Deformations of Membrane Shells With Wrinkling
,”
Finite Elem. Anal. Design
0168-874X,
39
, pp.
599
618
.
23.
Miller
,
R. K.
et al.
, 1985, “
Finite Element Analysis of Partly Wrinkled Membranes
,”
Comput. Struct.
0045-7949,
20
, pp.
631
639
.
24.
Raposio
,
E.
, and
Nordström
,
R. E. A.
, 1998, “
Biomechanical Properties of Scalp Flaps and Their Correlations to Reconstructive and Aesthetic Surgery Procedures
,”
Skin Res. Technol.
0909-752X,
4
, pp.
94
98
.
25.
Borges
,
A. F.
, 1989, “
Relaxed Skin Tension Lines
,”
Dermatol. Clin.
0733-8635,
7
(
1
), pp.
169
177
.
26.
Cerda
,
E.
, 2005, “
Mechanics of Scars
,”
J. Biomech.
0021-9290,
38
, pp.
1598
1603
.
27.
Cavicchi
,
A.
,
Gambarotta
,
L.
, and
Massabò
,
R.
, 2006, “
Computational Modeling of Reconstructive Surgery: The Effects of the Natural Tension on Skin Wrinkling
,” unpublished.
28.
Gambarotta
,
L.
,
Massabò
,
R.
, and
Morbiducci
,
R.
, 2002, “
A Computational Model of Scalp Skin for in Vivo Material Characterization and Reconstructive Surgery Simulation
,”
Proc., of the Fifth World Congress on Computational Mechanics (WCCM V)
, July 7–12,
Vienna, Austria
,
Mang
,
H. A.
;
Rammerstorfer
,
F. G.
; and
Eberhardsteiner
,
J.
, eds.,
Vienna University of Technology
,
Austria
.
29.
Danielson
,
D. A.
, and
Natarajan
,
S.
, (1975), “
Tension Field Theory and Stress in Stretched Skin
,”
J. Biomech.
0021-9290,
8
, pp.
135
142
.
30.
Chaudhry
,
H. R.
,
Bukiet
,
B.
,
Siegel
,
M.
,
Findley
,
T.
,
Ritter
,
A. B.
, and
Guzelsu
,
N.
, 1998, “
Optimal Patterns for Suturing Wounds
,”
J. Biomech.
0021-9290,
31
(
7
), pp.
653
662
.
31.
Lott-Crumpler
,
D. A.
, and
Chaudhry
,
H. R.
, 2001, “
Optimal Patterns for Suturing Wounds of Complex Shapes to Foster Healing
,”
J. Biomech.
0021-9290,
34
,
51
58
.
32.
Retel
,
V.
,
Vescovo
,
P.
,
Jacquet
,
E.
,
Trivaudey
,
F.
,
Varchon
,
D.
, and
Burtheret
,
A.
, 1991, “
Nonlinear Model of Skin Mechanical Behaviour Analysis With Finite Element Method
,”
Skin Res. Technol.
0909-752X,
7
, pp.
152
158
.
33.
Chretien-Marquet
,
B.
,
Caillou
,
V.
,
Brasnu
,
D. H.
,
Bennaceur
,
S.
, and
Buisson
,
T.
, 1999, “
Description of Cutaneous Excision and Suture Using a Mathematical Model
,”
Plast. Reconstr. Surg.
0032-1052,
103
(
1
), pp.
145
150
.
34.
Yoshida
,
H.
,
Tsutsumi
,
S.
,
Mizunuma
,
M.
, and
Yanai
,
A.
, 2001, “
A Surgical Simulation System of Skin Sutures Using a Three-Dimensional Finite Element Method
,”
Clin. Biomech. (Los Angel. Calif.)
0191-7870,
16
, pp.
621
626
.
35.
Yoshida
,
H.
,
Tsutsumi
,
S.
,
Mizunuma
,
M.
, and
Yanai
,
A.
, 2000, “
Three-Dimensional Finite Element Analysis of Skin Suture. Part 1: Spindle Model and S-Shaped Modified Model
,”
Med. Eng. Phys.
1350-4533,
22
, pp.
481
485
.
36.
Kirby
,
S. D.
,
Wang
,
B.
,
To
,
C. W. S.
, and
Lampe
,
H. B.
, 1998, “
Nonlinear, Three-Dimensional Finite-Element Model of Skin Biomechanics
,”
J. Otolaryngol.
0381-6605,
27
, pp.
153
160
.
37.
Manios
,
A.
,
Katsantonis
,
J.
,
Tosca
,
A.
,
Skulakis
,
Ch.
, and
Tsiftsis
,
D.
, 1996, “
The Finite Element Method as a Research and Teaching Tool in the Analysis of Local Skin Flaps
,”
Dermatol. Surg.
1076-0512,
22
, pp.
1029
1033
.
38.
Larrabee
,
W. F.
,
Holloway
,
G. A.
, and
Sutton
,
D.
, 1984, “
Wound Tension and Blood Flow in Skin Flaps
,”
Ann. Otol. Rhinol. Laryngol.
0003-4894, pp.
93
112
.
You do not currently have access to this content.