In this study a new solution for the identification of physical parameters of mechanical systems from identified state space formulations is presented. With the proposed approach, the restriction of having a full set of sensors or a full set of actuators for a complete identification is relaxed, and it is shown that a solution can be achieved by utilizing mixed types of information. The methodology is validated through numerical examples, and conceptual comparisons of the proposed methodology with previously presented approaches are also discussed.

1.
Agbabian
,
M. S.
,
Masri
,
S. F.
,
Miller
,
R. K.
, and
Caughey
,
T. K.
,
1991
, “
System Identification Approach to Detection of Structural Changes
,”
J. Eng. Mech.
,
117
(
2
), pp.
370
390
.
2.
Smyth
,
A. W.
,
Masri
,
S. F.
,
Caughey
,
T. K.
, and
Hunter
,
N. F.
,
2000
, “
Surveillance of Intricate Mechanical Systems on the Basis of Vibration Signature Analysis
,”
ASME J. Appl. Mech.
,
67
(
3
), pp.
540
551
.
3.
Ewins, D. J., 1984, Modal Testing: Theory and Practice Research Studies Press, Letchworth UK.
4.
Mottershead
,
J. E.
, and
Friswell
,
M. I.
,
1993
, “
Model Updating in Structural Dynamics: A Survey
,”
J. Sound Vib.
,
165
(
2
), pp.
347
375
.
5.
Berman
,
A.
,
1979
, “
Mass Matrix Correction Using an Incomplete Set of Measured Modes
,”
AIAA J.
,
17
(
10
), pp.
1147
1148
.
6.
Baruch
,
M.
,
1982
, “
Optimal Correction of Mass and Stiffness Matrices Using Measured Modes
,”
AIAA J.
,
20
(
11
), pp.
1623
1626
.
7.
Baruch
,
M.
,
1997
, “
Modal Data are Insufficient for Identification of Both Mass and Stiffness Matrices
,”
AIAA J.
,
35
(
11
), pp.
1797
1798
.
8.
Beck
,
J. L.
, and
Katafygiotis
,
L. S.
,
1998
, “
Updating Models and Their Uncertainties. I: Bayesian Statistical Framework
,”
J. Eng. Mech.
,
124
(
4
), pp.
455
461
.
9.
Ibrahim
,
S. R.
, and
Mikulcik
,
E. C.
,
1997
, “
A Method for the Direct Identification of Vibration Parameters From the Free Response
,”
Shock Vib. Bull.
,
47
, Part 4, pp.
183
198
.
10.
Ibrahim
,
S. R.
,
1977
, “
Random Decrement Technique for Modal Identification of Structures
,”
J. Spacecr. Rockets
,
14
(
11
), pp.
696
700
.
11.
Vold
,
H.
,
Kundrat
,
J.
,
Rocklin
,
G. T.
, and
Russell
,
R.
,
1982
, “
A Multiple-Input Modal Estimation Algorithm for Mini Computers
,”
SAE Trans.
,
91
(
1
), pp.
815
821
.
12.
Juang
,
J. N.
, and
Pappa
,
R. S.
,
1985
, “
An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction
,”
J. Guid. Control Dyn.
,
8
(
5
), pp.
620
627
.
13.
Juang
,
J. N.
,
Cooper
,
J. E.
, and
Wright
,
J. R.
,
1988
, “
An Eigensystem Realization Algorithm Using Data Correlations (ERA/DC) for Modal Parameter Identification
,”
Cont. Theor. Adv. Technol.
,
4
(
1
), pp.
5
14
.
14.
Juang
,
J. N.
,
Phan
,
M.
,
Horta
,
L. G.
, and
Longman
,
R. W.
,
1993
, “
Identification of Observer/Kalman Filter Markov Parameters: Theory and Experiments
,”
J. Guid. Control Dyn.
,
16
(
2
), pp.
320
329
.
15.
Lus¸
,
H.
,
Betti
,
R.
, and
Longman
,
R. W.
,
1999
, “
Identification of Linear Structural Systems Using Earthquake-Induced Vibration Data
,”
Earthquake Eng. Struct. Dyn.
,
28
, pp.
1449
1467
.
16.
Lus¸
,
H.
,
Betti
,
R.
, and
Longman
,
R. W.
,
2002
, “
Obtaining Refined First-Order Predictive Models of Linear Structural Systems,”
Earthquake Eng. Struct. Dyn.
,
31
, pp.
1413
1440
.
17.
Sestieri
,
A.
, and
Ibrahim
,
S. R.
,
1994
, “
Analysis of Errors and Approximations in the Use of Modal Coordinates
,”
J. Sound Vib.
,
177
(
2
), pp.
145
157
.
18.
Imregun, M., and Ewins, D. J., 1993, “Realization of Complex Modeshapes,” Proceedings of the 11th International Modal Analysis Conference, Society for Experimental Mechanics, Bethel, CT, pp. 1303–1309.
19.
Ibrahim
,
S. R.
,
1983
, “
Computation of Normal Modes From Identified Complex Modes
,”
AIAA J.
,
21
(
3
), pp.
446
451
.
20.
Alvin, K. F., 1993, “Second-Order Structural Identification Via State Space Based System Realizations,” Ph.D. Thesis, University of Colorado, Boulder, Co.
21.
Alvin
,
K. F.
, and
Park
,
K. C.
,
1994
, “
Second-Order Structural Identification Procedure Via State-Space-Based System Identification
,”
AIAA J.
,
32
(
2
), pp.
397
406
.
22.
Zhang
,
Q.
, and
Lallement
,
G.
,
1987
, “
Comparison of Normal Eigenmodes Calculation Methods Based on Identified Complex Eigenmodes
,”
J. Spacecr. Rockets
,
24
, pp.
69
73
.
23.
Yang
,
C. D.
, and
Yeh
,
F. B.
,
1990
, “
Identification, Reduction, and Refinement of Model Parameters by the Eigensystem Realization Algorithm
,”
J. Guid. Control Dyn.
,
13
(
6
), pp.
1051
1059
.
24.
Alvin
,
K. F.
,
Peterson
,
L. D.
, and
Park
,
K. C.
,
1995
, “
Method for Determining Minimum—Order Mass and Stiffness Matrices From Modal Test Data
,”
AIAA J.
,
33
(
1
), pp.
128
135
.
25.
Tseng
,
D.-H.
,
Longman
,
R. W.
, and
Juang
,
J. N.
,
1994
, “
Identification of Gyroscopic and Nongyroscopic Second Order Mechanical Systems Including Repeated Problems
,”
Adv. Astronaut. Sci.
,
87
, pp.
145
165
.
26.
Tseng
,
D.-H.
,
Longman
,
R. W.
, and
Juang
,
J. N.
,
1994
, “
Identification of the Structure of the Damping Matrix in Second Order Mechanical Systems
,”
Adv. Astronaut. Sci.
,
87
, pp.
166
190
.
27.
Chen
,
S. Y.
,
Ju
,
M. S.
, and
Tsuei
,
Y. G.
,
1996
, “
Extraction of Normal Modes for Highly Coupled Incomplete Systems With General Damping
,”
Mech. Syst. Signal Process.
,
10
(
1
), pp.
93
106
.
28.
Balme`s
,
E.
,
1997
, “
New Results on the Identification of Normal Modes From Experimental Complex Modes
,”
Mech. Syst. Signal Process.
,
11
(
2
), pp.
229
243
.
29.
Lus¸, H. 2001, “Control Theory Based System Identification,” Ph.D. Thesis, Columbia University, New York.
30.
Koh
,
C. G.
, and
See
,
L. M.
,
1993
, “
Identification and Uncertainty Estimation of Structural Parameters
,”
J. Eng. Mech.
,
120
(
6
), pp.
1219
1236
.
You do not currently have access to this content.