In this study a new solution for the identification of physical parameters of mechanical systems from identified state space formulations is presented. With the proposed approach, the restriction of having a full set of sensors or a full set of actuators for a complete identification is relaxed, and it is shown that a solution can be achieved by utilizing mixed types of information. The methodology is validated through numerical examples, and conceptual comparisons of the proposed methodology with previously presented approaches are also discussed.
Issue Section:
Technical Papers
1.
Agbabian
, M. S.
, Masri
, S. F.
, Miller
, R. K.
, and Caughey
, T. K.
, 1991
, “System Identification Approach to Detection of Structural Changes
,” J. Eng. Mech.
, 117
(2
), pp. 370
–390
.2.
Smyth
, A. W.
, Masri
, S. F.
, Caughey
, T. K.
, and Hunter
, N. F.
, 2000
, “Surveillance of Intricate Mechanical Systems on the Basis of Vibration Signature Analysis
,” ASME J. Appl. Mech.
, 67
(3
), pp. 540
–551
.3.
Ewins, D. J., 1984, Modal Testing: Theory and Practice Research Studies Press, Letchworth UK.
4.
Mottershead
, J. E.
, and Friswell
, M. I.
, 1993
, “Model Updating in Structural Dynamics: A Survey
,” J. Sound Vib.
, 165
(2
), pp. 347
–375
.5.
Berman
, A.
, 1979
, “Mass Matrix Correction Using an Incomplete Set of Measured Modes
,” AIAA J.
, 17
(10
), pp. 1147
–1148
.6.
Baruch
, M.
, 1982
, “Optimal Correction of Mass and Stiffness Matrices Using Measured Modes
,” AIAA J.
, 20
(11
), pp. 1623
–1626
.7.
Baruch
, M.
, 1997
, “Modal Data are Insufficient for Identification of Both Mass and Stiffness Matrices
,” AIAA J.
, 35
(11
), pp. 1797
–1798
.8.
Beck
, J. L.
, and Katafygiotis
, L. S.
, 1998
, “Updating Models and Their Uncertainties. I: Bayesian Statistical Framework
,” J. Eng. Mech.
, 124
(4
), pp. 455
–461
.9.
Ibrahim
, S. R.
, and Mikulcik
, E. C.
, 1997
, “A Method for the Direct Identification of Vibration Parameters From the Free Response
,” Shock Vib. Bull.
, 47
, Part 4, pp. 183
–198
.10.
Ibrahim
, S. R.
, 1977
, “Random Decrement Technique for Modal Identification of Structures
,” J. Spacecr. Rockets
, 14
(11
), pp. 696
–700
.11.
Vold
, H.
, Kundrat
, J.
, Rocklin
, G. T.
, and Russell
, R.
, 1982
, “A Multiple-Input Modal Estimation Algorithm for Mini Computers
,” SAE Trans.
, 91
(1
), pp. 815
–821
.12.
Juang
, J. N.
, and Pappa
, R. S.
, 1985
, “An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction
,” J. Guid. Control Dyn.
, 8
(5
), pp. 620
–627
.13.
Juang
, J. N.
, Cooper
, J. E.
, and Wright
, J. R.
, 1988
, “An Eigensystem Realization Algorithm Using Data Correlations (ERA/DC) for Modal Parameter Identification
,” Cont. Theor. Adv. Technol.
, 4
(1
), pp. 5
–14
.14.
Juang
, J. N.
, Phan
, M.
, Horta
, L. G.
, and Longman
, R. W.
, 1993
, “Identification of Observer/Kalman Filter Markov Parameters: Theory and Experiments
,” J. Guid. Control Dyn.
, 16
(2
), pp. 320
–329
.15.
Lus¸
, H.
, Betti
, R.
, and Longman
, R. W.
, 1999
, “Identification of Linear Structural Systems Using Earthquake-Induced Vibration Data
,” Earthquake Eng. Struct. Dyn.
, 28
, pp. 1449
–1467
.16.
Lus¸
, H.
, Betti
, R.
, and Longman
, R. W.
, 2002
, “Obtaining Refined First-Order Predictive Models of Linear Structural Systems,”
Earthquake Eng. Struct. Dyn.
, 31
, pp. 1413
–1440
.17.
Sestieri
, A.
, and Ibrahim
, S. R.
, 1994
, “Analysis of Errors and Approximations in the Use of Modal Coordinates
,” J. Sound Vib.
, 177
(2
), pp. 145
–157
.18.
Imregun, M., and Ewins, D. J., 1993, “Realization of Complex Modeshapes,” Proceedings of the 11th International Modal Analysis Conference, Society for Experimental Mechanics, Bethel, CT, pp. 1303–1309.
19.
Ibrahim
, S. R.
, 1983
, “Computation of Normal Modes From Identified Complex Modes
,” AIAA J.
, 21
(3
), pp. 446
–451
.20.
Alvin, K. F., 1993, “Second-Order Structural Identification Via State Space Based System Realizations,” Ph.D. Thesis, University of Colorado, Boulder, Co.
21.
Alvin
, K. F.
, and Park
, K. C.
, 1994
, “Second-Order Structural Identification Procedure Via State-Space-Based System Identification
,” AIAA J.
, 32
(2
), pp. 397
–406
.22.
Zhang
, Q.
, and Lallement
, G.
, 1987
, “Comparison of Normal Eigenmodes Calculation Methods Based on Identified Complex Eigenmodes
,” J. Spacecr. Rockets
, 24
, pp. 69
–73
.23.
Yang
, C. D.
, and Yeh
, F. B.
, 1990
, “Identification, Reduction, and Refinement of Model Parameters by the Eigensystem Realization Algorithm
,” J. Guid. Control Dyn.
, 13
(6
), pp. 1051
–1059
.24.
Alvin
, K. F.
, Peterson
, L. D.
, and Park
, K. C.
, 1995
, “Method for Determining Minimum—Order Mass and Stiffness Matrices From Modal Test Data
,” AIAA J.
, 33
(1
), pp. 128
–135
.25.
Tseng
, D.-H.
, Longman
, R. W.
, and Juang
, J. N.
, 1994
, “Identification of Gyroscopic and Nongyroscopic Second Order Mechanical Systems Including Repeated Problems
,” Adv. Astronaut. Sci.
, 87
, pp. 145
–165
.26.
Tseng
, D.-H.
, Longman
, R. W.
, and Juang
, J. N.
, 1994
, “Identification of the Structure of the Damping Matrix in Second Order Mechanical Systems
,” Adv. Astronaut. Sci.
, 87
, pp. 166
–190
.27.
Chen
, S. Y.
, Ju
, M. S.
, and Tsuei
, Y. G.
, 1996
, “Extraction of Normal Modes for Highly Coupled Incomplete Systems With General Damping
,” Mech. Syst. Signal Process.
, 10
(1
), pp. 93
–106
.28.
Balme`s
, E.
, 1997
, “New Results on the Identification of Normal Modes From Experimental Complex Modes
,” Mech. Syst. Signal Process.
, 11
(2
), pp. 229
–243
.29.
Lus¸, H. 2001, “Control Theory Based System Identification,” Ph.D. Thesis, Columbia University, New York.
30.
Koh
, C. G.
, and See
, L. M.
, 1993
, “Identification and Uncertainty Estimation of Structural Parameters
,” J. Eng. Mech.
, 120
(6
), pp. 1219
–1236
.Copyright © 2002
by ASME
You do not currently have access to this content.