An alternative decomposition of the strain gradient tensor is proposed in this paper in order to ensure that the deviatoric strain gradient vanishes for an arbitrary volumetric strain field, which is consistent with the physical picture of plastic deformation. The theory of mechanism-based strain gradient (MSG) plasticity is then modified accordingly based on this new decomposition. The numerical study of the crack-tip field based on the new theory shows that the crack tip in MSG plasticity has the square-root singularity, and the stress level is much higher than the HRR field in classical plasticity.

1.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1997
, “
Strain Gradient Plasticity
,”
Adv. Appl. Mech.
,
33
, pp.
295
361
.
2.
De Guzman
,
M. S.
,
Neubauer
,
G.
,
Flinn
,
P.
, and
Nix
,
W. D.
,
1993
, “
The Role of Indentation Depth on the Measured Hardness of Materials
,”
Mat. Res. Sym. Proc.
,
308
, pp.
613
618
.
3.
Stelmashenko
,
N. A.
,
Walls
,
M. G.
,
Brown
,
L. M.
, and
Milman
,
Y. V.
,
1993
, “
Microindentation on W and Mo Oriented Single Crystals: An STM Study
,”
Acta Metall. Mater.
,
41
, pp.
2855
2865
.
4.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiments
,”
Acta Metall. Mater.
,
42
, pp.
475
487
.
5.
Lloyd
,
D. J.
,
1994
, “
Particle Reinforced Aluminum and Magnesium Matrix Composites
,”
Int. Mater. Rev.
,
39
, pp.
1
23
.
6.
Ma
,
Q.
, and
Clarke
,
D. R.
,
1995
, “
Size Dependent Hardness of Silver Single Crystals
,”
J. Mater. Res.
,
10
, pp.
853
863
.
7.
Poole
,
W. J.
,
Ashby
,
M. F.
, and
Fleck
,
N. A.
,
1996
, “
Micro-hardness of Annealed and Work-Hardened Copper Polycrystals
,”
Scr. Metall. Mater.
,
34
, pp.
559
564
.
8.
McElhaney
,
K. W.
,
Vlassak
,
J. J.
, and
Nix
,
W. D.
,
1998
, “
Determination of Indenter Tip Geometry and Indentation Contact Area for Depth-Sensing Indentation Experiments
,”
J. Mater. Res.
,
13
, pp.
1300
1306
.
9.
Stolken
,
J. S.
, and
Evans
,
A. G.
,
1998
, “
A Microbend Test Method for Measuring the Plasticity Length Scale
,”
Acta Mater.
,
46
, pp.
5109
5115
.
10.
Smyshlyaev
,
V. P.
, and
Fleck
,
N. A.
,
1996
, “
Role of Strain Gradients in the Grain Size Effect for Polycrystals
,”
J. Mech. Phys. Solids
,
44
, pp.
465
495
.
11.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
1999
, “
Mechanism-Based Strain Gradient Plasticity—I. Theory
,”
J. Mech. Phys. Solids
,
47
, pp.
1239
1263
.
12.
Huang
,
Y.
,
Gao
,
H.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
2000
, “
Mechanism-Based Strain Gradient Plasticity—II. Analysis
,”
J. Mech. Phys. Solids
,
48
, pp.
99
128
.
13.
Huang
,
Y.
,
Xue
,
Z.
,
Gao
,
H.
,
Nix
,
W. D.
, and
Xia
,
Z. C.
,
2000
, “
A Study of Micro-Indentation Hardness Tests by Mechanism-Based Strain Gradient Plasticity
,”
J. Mater. Res.
,
15
, pp.
1786
1796
.
14.
Gao
,
H.
,
Huang
,
Y.
, and
Nix
,
W. D.
,
1999
, “
Modeling Plasticity at the Micrometer Scale
,”
Naturwissenschaften
,
86
, pp.
507
515
.
15.
Hwang
,
K. C.
, and
Inoue
,
T.
,
1998
, “
Recent Advances in Strain Gradient Plasticity
,”
Mat. Sci. Res. Int.
,
4
, pp.
227
238
.
16.
Acharya
,
A.
, and
Bassani
,
J. L.
,
2000
, “
Lattice Incompatibility and a Gradient Theory of Crystal Plasticity
,”
J. Mech. Phys. Solids
,
48
, pp.
1565
1595
.
17.
Acharya
,
A.
, and
Beaudoin
,
A. J.
,
2000
, “
Grain-Size Effect in Viscoplastic Polycrystals at Moderate Strains
,”
J. Mech. Phys. Solids
,
48
, pp.
2213
2230
.
18.
Dai, H., and Parks, D. M., 2001, “Geometrically Necessary Dislocation Density in Continuum Crystal Plasticity Theory and FEM Implementation,” unpublished manuscript.
19.
Qiu, X., Huang, Y., Wei, Y., Gao, H., and Hwang, K. C., 2001, “The Flow Theory of Mechanism-Based Strain Gradient Plasticity,” submitted for publication.
20.
Hutchinson
,
J. W.
,
1968
, “
Singular Behavior at the End of a Tensile Crack in a Hardening Material
,”
J. Mech. Phys. Solids
,
16
, pp.
13
31
.
21.
Rice
,
J. R.
, and
Rosengren
,
G. F.
,
1968
, “
Plane Strain Deformation Near a Crack Tip in a Power Law Hardening Material
,”
J. Mech. Phys. Solids
,
16
, pp.
1
12
.
You do not currently have access to this content.