An alternative decomposition of the strain gradient tensor is proposed in this paper in order to ensure that the deviatoric strain gradient vanishes for an arbitrary volumetric strain field, which is consistent with the physical picture of plastic deformation. The theory of mechanism-based strain gradient (MSG) plasticity is then modified accordingly based on this new decomposition. The numerical study of the crack-tip field based on the new theory shows that the crack tip in MSG plasticity has the square-root singularity, and the stress level is much higher than the HRR field in classical plasticity.
Issue Section:
Technical Papers
1.
Fleck
, N. A.
, and Hutchinson
, J. W.
, 1997
, “Strain Gradient Plasticity
,” Adv. Appl. Mech.
, 33
, pp. 295
–361
.2.
De Guzman
, M. S.
, Neubauer
, G.
, Flinn
, P.
, and Nix
, W. D.
, 1993
, “The Role of Indentation Depth on the Measured Hardness of Materials
,” Mat. Res. Sym. Proc.
, 308
, pp. 613
–618
.3.
Stelmashenko
, N. A.
, Walls
, M. G.
, Brown
, L. M.
, and Milman
, Y. V.
, 1993
, “Microindentation on W and Mo Oriented Single Crystals: An STM Study
,” Acta Metall. Mater.
, 41
, pp. 2855
–2865
.4.
Fleck
, N. A.
, Muller
, G. M.
, Ashby
, M. F.
, and Hutchinson
, J. W.
, 1994
, “Strain Gradient Plasticity: Theory and Experiments
,” Acta Metall. Mater.
, 42
, pp. 475
–487
.5.
Lloyd
, D. J.
, 1994
, “Particle Reinforced Aluminum and Magnesium Matrix Composites
,” Int. Mater. Rev.
, 39
, pp. 1
–23
.6.
Ma
, Q.
, and Clarke
, D. R.
, 1995
, “Size Dependent Hardness of Silver Single Crystals
,” J. Mater. Res.
, 10
, pp. 853
–863
.7.
Poole
, W. J.
, Ashby
, M. F.
, and Fleck
, N. A.
, 1996
, “Micro-hardness of Annealed and Work-Hardened Copper Polycrystals
,” Scr. Metall. Mater.
, 34
, pp. 559
–564
.8.
McElhaney
, K. W.
, Vlassak
, J. J.
, and Nix
, W. D.
, 1998
, “Determination of Indenter Tip Geometry and Indentation Contact Area for Depth-Sensing Indentation Experiments
,” J. Mater. Res.
, 13
, pp. 1300
–1306
.9.
Stolken
, J. S.
, and Evans
, A. G.
, 1998
, “A Microbend Test Method for Measuring the Plasticity Length Scale
,” Acta Mater.
, 46
, pp. 5109
–5115
.10.
Smyshlyaev
, V. P.
, and Fleck
, N. A.
, 1996
, “Role of Strain Gradients in the Grain Size Effect for Polycrystals
,” J. Mech. Phys. Solids
, 44
, pp. 465
–495
.11.
Gao
, H.
, Huang
, Y.
, Nix
, W. D.
, and Hutchinson
, J. W.
, 1999
, “Mechanism-Based Strain Gradient Plasticity—I. Theory
,” J. Mech. Phys. Solids
, 47
, pp. 1239
–1263
.12.
Huang
, Y.
, Gao
, H.
, Nix
, W. D.
, and Hutchinson
, J. W.
, 2000
, “Mechanism-Based Strain Gradient Plasticity—II. Analysis
,” J. Mech. Phys. Solids
, 48
, pp. 99
–128
.13.
Huang
, Y.
, Xue
, Z.
, Gao
, H.
, Nix
, W. D.
, and Xia
, Z. C.
, 2000
, “A Study of Micro-Indentation Hardness Tests by Mechanism-Based Strain Gradient Plasticity
,” J. Mater. Res.
, 15
, pp. 1786
–1796
.14.
Gao
, H.
, Huang
, Y.
, and Nix
, W. D.
, 1999
, “Modeling Plasticity at the Micrometer Scale
,” Naturwissenschaften
, 86
, pp. 507
–515
.15.
Hwang
, K. C.
, and Inoue
, T.
, 1998
, “Recent Advances in Strain Gradient Plasticity
,” Mat. Sci. Res. Int.
, 4
, pp. 227
–238
.16.
Acharya
, A.
, and Bassani
, J. L.
, 2000
, “Lattice Incompatibility and a Gradient Theory of Crystal Plasticity
,” J. Mech. Phys. Solids
, 48
, pp. 1565
–1595
.17.
Acharya
, A.
, and Beaudoin
, A. J.
, 2000
, “Grain-Size Effect in Viscoplastic Polycrystals at Moderate Strains
,” J. Mech. Phys. Solids
, 48
, pp. 2213
–2230
.18.
Dai, H., and Parks, D. M., 2001, “Geometrically Necessary Dislocation Density in Continuum Crystal Plasticity Theory and FEM Implementation,” unpublished manuscript.
19.
Qiu, X., Huang, Y., Wei, Y., Gao, H., and Hwang, K. C., 2001, “The Flow Theory of Mechanism-Based Strain Gradient Plasticity,” submitted for publication.
20.
Hutchinson
, J. W.
, 1968
, “Singular Behavior at the End of a Tensile Crack in a Hardening Material
,” J. Mech. Phys. Solids
, 16
, pp. 13
–31
.21.
Rice
, J. R.
, and Rosengren
, G. F.
, 1968
, “Plane Strain Deformation Near a Crack Tip in a Power Law Hardening Material
,” J. Mech. Phys. Solids
, 16
, pp. 1
–12
.Copyright © 2002
by ASME
You do not currently have access to this content.