A fatigue theory with its failure criterion based on physical damage mechanisms is presented for solders. The theory applies Mura’s micromechanical fatigue model to individual grains of the solder structure. By introducing grain orientation (Schmid factor m) into the fatigue formula, an m-N curve at constant loading, similar to a fatigue S-N curve, is suggested for fatigue failure of grains with different orientations. A solder structure is defined as fatigued when the ratio of its failed grains reaches a critical threshold, since at this threshold the failed grains may form a cluster, according to percolation theory. Experimental data for 96.5Pb-3.5Sn (wt. %) solder bulk specimens showed good agreement with the theory and its associated failure criterion. The theory is anisotropic, and there is no size limitation to its application, which could be suitable for anisotropic small-scale (micron scale or smaller) solder joints.

1.
SEMATECH, 1999, The International Technology Roadmap for Semiconductors: 1999 Edition, International SEMATECH, Austin, TX.
2.
Lee
,
W. W.
,
Nguyen
,
L. T.
, and
Selvaduray
,
G. S.
,
2000
, “
Solder Joint Fatigue Models: Review and Applicability to Chip Scale Packages
,”
Microelectron. Reliab.
,
40
, pp.
231
244
.
3.
Vaynman
,
S.
, and
Zubelewicz
,
A.
,
1990
, “
Fatigue Life Prediction For Low-Tin Lead-Based Solder At Low Strains
,”
Weld. J. (Miami)
,
69
, pp.
S395–S398
S395–S398
.
4.
Frear
,
D. R.
,
Grivas
,
D.
, and
Morris
,
J. W.
,
1988
, “
Thermal Fatigue in Solder Joints
,”
Journal of Metals
40
, pp.
18
22
.
5.
Rathore
,
H. S.
,
Yih
,
R. C.
, and
Edenfeld
,
A. R.
,
1973
, “
Fatigue Behavior of Solders Used in Flip-Chip Technology
,”
J. Test. Eval.
,
1
, pp.
170
178
.
6.
Stolkarts
,
V.
,
Keer
,
L. M.
, and
Fine
,
M. E.
,
1999
, “
Damage Evolution Governed by Microcrack Nucleation With Application to the Fatigue of 63Sn-37Pb Solder
,”
J. Mech. Phys. Solids
,
47
, pp.
2451
2468
.
7.
Vaynman, S., 1987, “Isothermal Fatigue of 96.5Pb-3.5Sn Solder,” Ph.D. dissertation, Northwestern University, Evanston, IL.
8.
Lawson, L. R., 1989, “Thermomechanical Fatigue of 97Pb-3Sn,” Ph.D. dissertation, Northwestern University, Evanston, IL.
9.
Forsyth
,
P. J. E.
,
1953
, “
Exudation of Material From Slip Bands at the Surface of Fatigued Crystals of an Aluminum-Copper Alloy
,”
Nature (London)
,
171
, pp.
172
173
.
10.
Mavoori, H., 1996, “Mechanical Properties and Fatigue Lifetime Prediction of Solders for Electronic Applications: Tin-Silver and Tin-Zinc Eutectics,” Ph.D. dissertation, Northwestern Universty, Evanston, IL.
11.
Lin
,
T. H.
, and
Ito
,
Y. M.
,
1969
, “
Micromechanics of a Fatigue Crack Nucleation Mechanism
,”
J. Mech. Phys. Solids
,
17
, pp.
511
523
.
12.
Mura
,
T.
, and
Nakasone
,
Y.
,
1990
, “
A Theory of Fatigue Crack Initiation in Solids
,”
ASME J. Appl. Mech.
,
57
, pp.
1
6
.
13.
Mura
,
T.
,
1994
, “
A Theory of Fatigue-Crack Initiation
,”
Mater. Sci. Eng., A
,
176
, pp.
61
70
.
14.
Shodja
,
H. M.
,
Hirose
,
Y.
, and
Mura
,
T.
,
1996
, “
Intergranular Crack Nucleation in Bicrystalline Materials Under Fatigue
,”
ASME J. Appl. Mech.
,
63
, pp.
788
795
.
15.
Fine
,
M. E.
,
2000
, “
Phase Transformation Theory Applied to Elevated Temperature Fatigue
,”
Scr. Mater.
,
42
, pp.
1007
1012
.
16.
Lin
,
T. H.
,
Wong
,
K. K. F.
,
Teng
,
N. J.
, and
Lin
,
S. R.
,
1998
, “
Micromechanic Analysis of Fatigue Band Crossing Grain Boundary
,”
Mater. Sci. Eng., A
,
246
, pp.
169
179
.
17.
Hirth, J. P., and Lothe, J., 1982, Theory of Dislocations, 2nd Ed., John Wiley and Sons, New York.
18.
Lin, T. H., 1992, “Micromechanics of Crack Initiation in High-Cycle Fatigue,” Advances in Applied Mechanics, Vol. 29, Academic Press, New York, pp. 1–62.
19.
Suresh, S., 1998, Fatigue of Materials, 2nd Ed., Cambridge University Press, Cambridge, U.K.
20.
Dingli
,
J. P.
,
Abdul-Latif
,
A.
, and
Saanouni
,
K.
,
2000
, “
Predictions of the Complex Cyclic Behavior of Polycrystals Using a Self-Consistent Modeling
,”
Int. J. Plast.
16
, pp.
411
437
.
21.
Chin, G. Y., 1973, “The Role of Preferred Orientation in Plastic Deformation,” Inhomogeneity of Plastic Deformation, ASM, Metals Park, OH, pp. 83–111.
22.
Yue
,
Z. F.
,
Tao
,
X. D.
,
Ying
,
Z. Y.
, and
Li
,
H. Y.
,
2000
, “
A Crystallographic Model for the Orientation Dependence of Low Cyclic Fatigue Property of a Nickel-Base Single Crystal Superalloy
,”
Appl. Math. Mech.
,
21
, pp.
415
424
(English Edition).
23.
Zhang
,
Z. F.
, and
Wang
,
Z. G.
,
1998
, “
Effect of Component Crystal Orientations on the Cyclic Stress-Strain Behavior of Copper Bicrystals
,”
Mater. Sci. Eng., A
,
255
, pp.
148
153
.
24.
Henderson
,
M. B.
, and
Martin
,
J. W.
,
1996
, “
The Influence of Crystal Orientation on the High Temperature Fatigue Crack Growth of a Ni-Based Single Crystal Superalloy
,”
Acta Mater.
,
44
, pp.
111
126
.
25.
Li
,
X. W.
,
Wang
,
Z. G.
, and
Li
,
S. X.
,
1999
, “
Influence of Crystallographic Orientation on Cyclic Strain-Hardening Behaviour of Copper Single Crystals
,”
Philos. Mag. Lett.
,
79
, pp.
869
875
.
26.
Tan
,
X.
,
Gu
,
H.
,
Laird
,
C.
, and
Munroe
,
N. D. H.
,
1998
, “
Cyclic Deformation Behavior of High-Purity Titanium Single Crystals: Part I. Orientation Dependence of Stress-Strain Response
,”
Metall. Mater. Trans. A
,
29
, pp.
507
512
.
27.
Bonda
,
N. R.
, and
Noyan
,
I. C.
,
1996
, “
Effect of the Specimen Size in Predicting the Mechanical Properties of PbSn Solder Alloys
,”
IEEE Trans. Compon. Pack. Manufact. Tech., Part A
,
19
, pp.
208
212
.
28.
Bonda
,
N. R.
, and
Noyan
,
I. C.
,
1992
, “
Deformation Inhomogeneity and Representative Volume in Pb/Sn Solder Alloys
,”
Metall. Trans. A
,
23
, pp.
479
484
.
29.
Guo
,
Q.
,
Cutiongco
,
E. C.
,
Keer
,
L. M.
, and
Fine
,
M. E.
,
1992
, “
Thermomechanical Fatigue Life Prediction of 63Sn/37Pb Solder
,”
ASME J. Electron. Packag.
,
114
, pp.
145
151
.
30.
Stauffer, D., and Aharony, A., 1992, Introduction to Percolation Theory, 2nd Ed., Taylor & Francis, Washington, DC.
31.
Adams
,
B. L.
,
Boehler
,
J. P.
,
Guidi
,
M.
, and
Onat
,
E. T.
,
1992
, “
Group Theory and Representation of Microstructure and Mechanical Behavior of Polycrystals
,”
J. Mech. Phys. Solids
,
40
, pp.
723
737
.
32.
Bunge
,
H. J.
,
1987
, “
Three-Dimensional Texture Analysis
,”
Int. Mater. Rev.
,
32
, pp.
265
291
.
33.
Park
,
N. J.
, and
Bunge
,
H. J.
,
1990
, “
Determination of the Orientation Distribution Function of a Cuznal Shape Memory Alloy
,”
Z. Metallkd.
,
81
, pp.
636
645
.
34.
Kumar
,
S.
,
Kurtz
,
S. K.
, and
Agarwala
,
V. K.
,
1996
, “
Micro-Stress Distribution Within Polycrystalline Aggregate
,”
Acta Mech.
,
114
, pp.
203
216
.
35.
Barrett, C. S., and Massalski, T. B., 1980, Structure of Metals: Crystallographic Methods, Principles and Data, 3rd Rev. Ed., Pergamon, New York.
36.
Lawson
,
L. R.
,
1987
, “
Thermal Cycling Apparatus For Thermomechanical Fatigue Testing
,”
Rev. Sci. Instrum.
,
58
, pp.
1942
1944
.
37.
Marinescu, G. M., Chen, Y. Y. T., Li, H. H., Beaumont, M., Chen, J. C. F., and Ho, C. Y., 1999, “Thermal, Mechanical, Electrical, and Physical Properties of Selected Packaging Materials,” Report No. CINDAS Report 126, Center for Information and Numerical Data Analysis and Synthesis (CINDAS) of Purdue University, West Lafayette, IN.
38.
Liang
,
J.
,
Gollhardt
,
N.
,
Lee
,
P. S.
,
Schroeder
,
S. A.
, and
Morris
,
W. L.
,
1996
, “
A Study of Fatigue and Creep Behavior of Four High Temperature Solders
,”
Fatigue Fract. Eng. Mater. Struct.
,
19
, pp.
1401
1409
.
You do not currently have access to this content.