This paper presents a novel Tuned Vibration Absorber (TVA) using Fluidic Flexible Matrix Composites (F2MC). Fiber reinforcement of the F2MC tube kinematically links the internal volume with axial strain. Coupling of a fluid-filled F2MC tube through a fluid port to a pressurized air accumulator can suppress primary mass forced vibration at the tuned absorber frequency. 3-D elasticity model for the tube and a lumped fluid mass develops a 4th-order model of an F2MC-mass system. The model provides a closed form isolation frequency that depends mainly on the port inertance, orifice flow coefficient, and the tube parameters. A small amount of viscous damping in the orifice increases the isolation bandwidth. With a fully closed orifice, the zero disappears and the system has a single resonant peak. Variations in the primary mass do not change the isolation frequency, making the F2MC TVA robust to mass variations. Experimental results validate the theoretical predictions in showing a tunable isolation frequency that is insensitive to primary mass variations, and a 94% reduction in forced vibration response relative to the closed-valve case.

This content is only available via PDF.
You do not currently have access to this content.