This manuscript introduces the challenges in the fabrication of graphene sheet reinforced non-crimp fabric (NCF) composite laminates and their influence on the interlaminar strength of the composite laminates. In the current work, the laminates were fabricated using non-crimp carbon fabric prepreg along with 50,120 and 240 μm thick graphene sheets at the mid-plane. Double Cantilever Beam (DCB) tests are done as per ASTM 5528 using INSTRON electromechanical testing system. Modified Beam Theory method used to compute Mode I fracture toughness, using load, displacement, specimen dimension, and crack opening displacement.

The graphene sheets are brittle; little bonding between the graphene and matrix observed during the fabrication process results in a fragile interface. To overcome this problem, graphene sheets were converted into a lattice structure. The lattice structure used in the present research had horizontal, vertical, and square grids. Effects of sheet thickness, grid pattern were evaluated by Mode I fracture toughness, with and without nanoengineered enhanced laminates. Axio Image upright microscope used to compare the bonding at the midplane after the DCB test. The results indicate that the composite laminates fabricated using lattice graphene structure had better interlaminar strength than the laminates fabricated with straight graphene sheets.

This content is only available via PDF.
You do not currently have access to this content.