Abstract

Wire Electrical Discharge Machining (WEDM) is a specialized thermal machining process capable of accurately machining parts with varying hardness or complex shapes, which have sharp edges that are very difficult to be machined by the main stream machining processes. This study outlines the development of model and its application to estimation of machining performances using Group Method Data Handling Technique (GMDH) and Artificial Neural Network (ANN). Experimentation was performed as per Taguchi’s L’16 orthogonal array for Stavax (modified AISI 420 steel) material. Each experiment has been performed under different cutting conditions of pulse-on, pulse-off, current and bed speed. Among different process parameters voltage and flush rate were kept constant. Molybdenum wire having diameter of 0.18 mm was used as an electrode. Four responses namely accuracy, surface roughness, Volumetric Material Removal Rate (VMRR) and Electrode Wear (EW) have been considered for each experiment. Estimation and comparison of responses was carried out using GMDH and ANN. Group method data handling technique is ideal for complex, unstructured systems where the investigator is only interested in obtaining a high-order input-output relationship. Also, the method is heuristic in nature and is not based on a solid foundation as in regression analysis.

The GMDH algorithm is designed to learn the process by training the algorithm with the experimental data. The experimental observations are divided into two sets viz., the training set and testing set. The training set is used to make the GMDH learn the process and the testing set will check the performance of GMDH. Different models can be obtained by varying the percentage of data in the training set and the best model can be selected from these, viz., 50%, 62.5% & 75%. The best model is selected from the said percentages of data. Number of variables selected at each layer is usually taken as a fixed number or a constantly increasing number. It is usually given as fractional increase in number of independent variables present in the previous level. Three different criterion functions, viz., Root Mean Square (Regularity) criterion, Unbiased criterion and Combined criterion were considered for estimation. The choice of the criterion for node selection is another important parameter for proper modeling.

The Artificial Neural Network is used to study and predict the machining responses. Input data are fed into the neural network and corresponding weights and bias are extracted. Then weights and bias are integrated in the program which is used to calculate and predict the machining responses. Estimation of machining performances was obtained by using ANN for various cutting conditions. ANN estimates were obtained for various percentages of total data in the training set viz., 50%, 60% & 70%. The best model is selected from the said percentages of data. Estimation and comparison of machining performances were carried out using GMDH and ANN. Estimates from GMDH and ANN were compared and it was observed that ANN with 70% of data in training set gives better results than GMDH.

This content is only available via PDF.
You do not currently have access to this content.