This paper highlights the application of methods and techniques from nonlinear analysis to illustrate their far superior capability in revealing complex cardiac dynamics under various physiological and pathological states. The purpose is to augment conventional (time and frequency based) heart rate variability analysis, and to extract significant prognostic and clinically relevant information for risk stratification and improved diagnosis. In this work, several nonlinear indices are estimated for RR intervals based time series data acquired for Healthy Sinus Rhythm (HSR) and Congestive Heart Failure (CHF), as the two groups represent different cases of Normal Sinus Rhythm (NSR). In addition to this, nonlinear algorithms are also applied to investigate the internal dynamics of Atrial Fibrillation (AFib). Application of nonlinear tools in normal and diseased cardiovascular states manifest their strong ability to support clinical decision support systems and highlights the internal complex properties of physiological time series data such as complexity, irregularity, determinism and recurrence trends in cardiovascular regulation mechanisms.

This content is only available via PDF.
You do not currently have access to this content.