It is common practice to reduce the voltage level within piezoelectric actuators by utilizing multiple layers, typically bonded together. Unfortunately, this has a tendency to result in device failure due to delamination. For example, with benders the typical lifetime is 105 to 106 cycles, limiting its use in practical applications. This poses an interesting design tradeoff: the stroke is increased due to sharper gradients between material layers; however, the higher gradients lead to high stress concentrations at those interfaces. One approach to reducing these stresses is to grade the material properties through a monolithic piece of piezoceramic so that no interfaces or bonding elements exist, but this comes at the cost of stroke. This paper explores the design tradeoff inherent to monolithic functionally graded piezoelectrics. An analytical free-displacement model for a monolithic piezoceramic beam with a generic gradient is derived. Key to this is the inclusion of the complex electric field distribution which rises from the non-homogeneous material properties. This model is used along with finite element models to examine the effect of continuous linear and stepwise material gradients on the displacement performance as well as the stress levels. The study shows that using monolithic functionally graded piezocermics can significantly reduce the stresses with only a minor impact on the device stroke.

This content is only available via PDF.
You do not currently have access to this content.