In this paper, we present the design, modeling and, fabrication of a soft bending actuator that combines casting techniques and additive manufacturing. We performed tests to evaluate the bending actuator’s angular deflection and tip force. We demonstrated flexibility in the process by varying the bladder material. We also showed the actuator’s resilience to damage by cutting and puncturing the exoskeleton prior to operation. Finally, we integrated the bending actuator into a three-finger gripper configuration and performed a gripping test for four different objects with various weights and shapes. Results show that the curvature and force obtained in these actuators are comparable to other proposed bending actuators with a faster and more adaptable fabrication process. With these results we demonstrate that fast, effective, and versatile fabrication of soft robotic components can be attained by combining casting and additive manufacturing techniques.

This content is only available via PDF.
You do not currently have access to this content.