This paper extends a previously developed Pseudo Rigid Body (PRB) analytical model for miniature elastomeric joints by introducing correction factors for joints with geometry not previously considered. Inclusion of these correction factors has resulted in an increase in the accuracy of the model from 20% to within 3% in bending and from 25% to within 7% in tension, when compared to equivalent Finite Element Analysis (FEA) models. Additionally, using the PRB model, a robotic leg with four elastomeric joints has been modeled, resulting in a maximum error of 12% when compared to an equivalent FEA model. Finally, the PRB model was used to optimize the robotic leg for minimum motor torque required to drive a hexapedal robot with six identical legs.

This content is only available via PDF.
You do not currently have access to this content.