The objective of this paper is to introduce and demonstrate a new method for the topology optimization of compliant mechanisms. The proposed method relies on exploiting the topological derivative, and it exhibits numerous desirable properties including: (1) the mechanisms are hinge-free, (2) mechanisms with different geometric and mechanical advantages can be generated by varying a single control parameter, (3) a target volume fraction need not specified; instead numerous designs, of decreasing volume fractions, are generated in a single optimization run, and (4) the underlying finite element stiffness matrices are well-conditioned, permitting the use of high-performance iterative solvers. The proposed method and implementation are illustrated through numerical experiments in 2D and 3D.

This content is only available via PDF.
You do not currently have access to this content.