Abstract

In order to extend the operation regime of existing gas turbine combustion systems to lower the minimum loads, the applicability of matrix burners (arrays of jet flames) as an alternative to conventional swirl stabilized burners has been considered. In comparison to well-studied single jet flame systems, the effects of geometry and thermodynamic parameters on characteristics of matrix burner systems have not been studied in detail. Information, which is essential for design processes e.g. scaling of matrix burners, is not yet available in public domain. This work involves a systematic investigation of a matrix burner system operating at highly turbulent flow conditions (Reynolds Number ≈ 20000) prevailing in gas turbine combustion systems.

In order to understand the effects of geometrical scaling, three variants of jet diameter have been investigated. A detailed test campaign including lean blow out limits detection, velocity field measurement and hydroxyl radical (OH*) chemiluminescence recording has been conducted. Influence of variation in stoichiometry and exit velocity of fuel-air mixture has been captured. The results show that it is possible to generalize the scaling of the matrix burner using the well-known Peclet criterion.

This content is only available via PDF.
You do not currently have access to this content.